K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

Đáp án D

+ Từ phương trình :  64 x 1 2   +   36 x 2 2 =   48 2   c m (1) Thay  x 1 = 3 cm,  ta có:

+ Đạo hàm phương trình (1), ta có:

⇒ 64 . 2 x 1 . x 1 '   +   36 . 2 x 2 . x 2 '   =   0 ⇒ 128 x 1 . x 1 '   +   72 x 2 . x 2 '   =   0

+ Theo định nghĩa vận tốc, ta có:  v   =   x '   =   ⇒ x 1 '   =   v 1 x 2 '   =   v 2

Thay vào phương trình trên ta có:  128 x 1 . v 1   +   72 x 2 . v 2   =   0 ⇒ v 2   =   - 128 x 1 . v 1 72 x 2

+ Về độ lớn (tốc độ):

 

 

25 tháng 7 2016

Ta có :

\(64^2_1x=36x^2_2=48^2\)

=> \(64x_1\le48^2\)

=> \(36x_2\le48^2\)

=> A1 = 6 (cm)

=> A2 = 8 (cm)

=> \(\frac{V_2}{V_1}=\frac{\omega\sqrt{A^2_2-x^2_2}}{\omega\sqrt{A^2_1-x^2_1}}=\frac{\sqrt{A^2_2-x^2_2}}{\sqrt{A^2_1-x^2_1}}=\frac{4}{3\sqrt{3}}\)

Vậy V2 = \(\frac{4.18}{3\sqrt{3}}=8\sqrt{3}\) (cm/giây)

20 tháng 8 2018

Đáp án B

23 tháng 7 2017

Chọn B

+ Thay x1 = 3cm vào  => x2 = ± 4cm.

+ Đạo hàm theo thời gian hai vế của phương trình , ta được:

64. 2x1v1 + 36.2x2v2 = 0 (v chính là đạo hàm bậc nhất của x theo thời gian).

Hay 128.x1v1 + 72.x2v2 = 0. Thay giá trị của x1, xvà v1 vào ta được |v2|= 24 cm/s.

25 tháng 11 2018

Chọn đáp án D

Bài 3: Một con lắc đơn có chiều dài dây treo 1 m, dao động điều hòa tại nơi có gia tốc trọng trường g π2 m/s2.Số lần động năng bằng thế năng trong khoảng thời gian 4 s là A. 16. B. 6. C. 4. D. 8.Bài 4: Một vật dao động điều hoà theo phương trình x = 2cos(5πt -π/3) (cm) (t đo bằng giây).Trong khoảng thời gian từ t = 1 (s) đến t = 2 (s) vật đi qua vị trí x = 0 cm được mấy lần? A. 6 lần. B. 5 lần. C. 4...
Đọc tiếp

Bài 3: Một con lắc đơn có chiều dài dây treo 1 m, dao động điều hòa tại nơi có gia tốc trọng trường g π2 m/s2.

Số lần động năng bằng thế năng trong khoảng thời gian 4 s là A. 16. B. 6. C. 4. D. 8.

Bài 4: Một vật dao động điều hoà theo phương trình x = 2cos(5πt -π/3) (cm) (t đo bằng giây).

Trong khoảng thời gian từ t = 1 (s) đến t = 2 (s) vật đi qua vị trí x = 0 cm được mấy lần? A. 6 lần. B. 5 lần. C. 4 lần. D. 7 lần. Bài 5: Một chất điểm dao động điều hòa theo phương trình x = Acos(2πt/T + π/4) (cm). Trong khoảng thời gian 2,5T đầu tiên từ thời điểm t = 0, chất điểm đi qua vị trí có li độ x = 2A/3 là A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần.

Bài 6: Một chất điểm dao động điều hoà có vận tốc bằng không tại hai thời điểm liên tiếp là t1 = 2,2 (s) và t2 = 2,9 (s). Tính từ thời điểm ban đầu (to = 0 s) đến thời điểm t2 chất điểm đã đi qua vị trí cân bằng A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần

. Bài 7: Một vật dao động điều hoà theo phương trình: x = 2cos(5πt - π/3) (cm). Trong giây đầu tiên kể từ lúc bắt đầu dao động vật đi qua vị trí có li độ x = -1 cm theo chiều dương được mấy lần? A. 2 lần. B. 3 lần. C. 4 lần. D. 5 lần.

Bài 8: Một chất điểm dao động điều hoà tuân theo quy luật: x = 5cos(5πt - π/3) (cm). Trong khoảng thời gian t = 2,75T (T là chu kì dao động) chất điểm đi qua vị trí cân bằng của nó A. 3 lần. B. 4 lần. C. 5 lần. D. 6 lần.

Bài 9: Một chất điểm dao động điều hòa với phương trình: x = 4cos(4πt + π/3) (cm). Trong thời gian 1,25 s tính từ thời điểm t = 0, vật đi qua vị trí có li độ x = -1 cm A. 3 lần.                B. 4 lần.                 C. 5 lần.                 D. 6 lần. Bài 10: Chất điểm dao động điều hòa với phương trình: x = Acos(2πt/T + π/4) (cm). Trong thời gian 2,5T kể từ thời điểm t = 0, số lần vật đi qua li độ x = 2A/3 làπ A. 6 lần. B. 4 lần. C. 5 lần. D. 9 lần. 

0
29 tháng 7 2019

Đạo hàm:  64 x 1 2   +   32 x 2 2   =   48 2  (*)

→ 128 x 1 v 1   +   64 x 2 v 2   =   0  (**)

Tại thời điểm t: x 1  = 3cm, từ (*) → x 2   =   3 6 , theo (**)  → x 2   =   6 6  cm/s.

Chọn C.

16 tháng 6 2016

Mỗi câu hỏi bạn nên hỏi 1 bài thôi để tiện trao đổi nhé.

Biểu diễn dao động bằng véc tơ quay ta có:

M x 2 1 O N

Để vật qua li độ 1 cm theo chiều dương thì véc tơ quay qua N.

Trong giây đầu tiên, véc tơ quay đã quay 1 góc là: \(5\pi\), ứng với 2,5 vòng quay.

Xuất phát từ M ta thấy véc tơ quay quay đc 2,5 vòng thì nó qua N 3 lần do vậy trong giây đầu tiên, vật qua li độ 1cm theo chiều dương 3 lần.

Bạn xem thêm lí thuyết phần này ở đây nhé 

Phương pháp véc tơ quay và ứng dụng | Học trực tuyến

16 tháng 6 2016

Bài 1 :

T = 2π / ω = 0.4 s 
Vật thực hiện được 2 chu kì và chuyển động thêm trong 0.2 s (T/2 ) nữa 
1 chu kì vật qua vị trí có li độ x=2cm theo chiều dương được "1 " lần 
⇒ 2 ________________________________________... lần 
phần lẻ 0.2s (T/2) , (góc quét là π ) (tức là chất điểm CĐ tròn đều đến vị trí ban đầu và góc bán kính quét thêm π (rad) nữa, vị trí lúc nầy: 
x = 1 + 2cos(-π/2 + π ) = 1, (vận tốc dương) vật qua vị trí có li độ x=2cm theo chiều dương thêm 1 lần nữa 
(từ VT ban đầu (vị tri +1 cm ) –> biên dương , về vị trí có ly độ x = +1 cm 
do đó trong giây đầu tiên kể từ lúc t=0 vật qua vị trí có li độ x=2cm theo chiều dương được 3 lần

Chọn A 

30 tháng 9 2015

Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)

+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)

+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)

Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)

19 tháng 5 2018

tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???

2 tháng 10 2015

Phương trình tổng quát: \(x= A\cos(\omega t +\varphi)\)

Áp dụng công thức độc lập: \(A^2 = x^2 +\frac{v^2}{\omega ^2} \Rightarrow (\frac{x}{A})^2+(\frac{v}{\omega A})^2=1\)\(\Rightarrow\left\{ \begin{array}{} A^2 = 16\ \\ \omega^2 A^2 =640 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} A = 4\ \\ \omega =2\pi \end{array} \right.\)

t = 0\(\Rightarrow\left\{ \begin{array}{} x_0 = A/2\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{1}{2}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)

Phương trình dao động: \(x=4\cos(2\pi t +\frac{\pi}{3}) \ (cm)\)