K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2019

Nghiệm chung x (nếu có) của hai phương trình là nghiệm của hệ:

Giải bài 15 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

Lấy (1) trừ (2) vế trừ vế ta được:

ax + 1+ x+ a = 0

⇔ ( ax+ x) + (1+ a) =0

⇔ (a+ 1).x+ (1+ a) = 0

⇔ ( a+ 1) . (x+1)=0

⇔ a = - 1 hoặc x= -1

* Với a = -1 thay vào (2) ta được: x 2 -   x   +   1   =   0  phương trình này vô nghiệm

vì  ∆ =   ( - 1 ) 2   –   4 . 1 . 1 =   -   3   <   0

nên loại a = -1.

*Thay x = -1 vào (2) suy ra a = 2.

Vậy với a = 2 thì phương trình có nghiệm chung là x = -1

Vậy chọn câu C.

Chọn C

31 tháng 3 2019

Nghiệm chung x (nếu có) của hai phương trình là nghiệm của hệ:

Giải bài 15 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

Lấy (1) trừ (2) vế trừ vế ta được:

ax + 1+ x+ a = 0

⇔ ( ax+ x) + (1+ a) =0

⇔ (a+ 1).x+ (1+ a) = 0

⇔ ( a+ 1) . (x+1)=0

⇔ a = - 1 hoặc x= -1

* Với a = -1 thay vào (2) ta được:   x 2 -   x   +   1   =   0  phương trình này vô nghiệm

vì    ∆ =   ( - 1 ) 2   –   4 . 1 . 1 =   -   3   <   0

nên loại a = -1.

*Thay x = -1 vào (2) suy ra a = 2.

Vậy với a = 2 thì phương trình có nghiệm chung là x = -1

Vậy chọn câu C.

Nhiều thế, chắc phải đưa ra đáp thôi

21 tháng 4 2020

Gọi x0 là nghiệm chung của 2 phương trình

Ta có:\(x_0^2+ax_0+bc=0;x_0^2+bx_0+ca=0\)

\(\Rightarrow\left(a-b\right)x_0=c\left(a-b\right)\)

Mà \(a\ne b\Rightarrow x_0=c\)

Gọi các nghiệm của phương trình x2 +ax + bc = 0 và x2 + bx + ac = 0 là x1 và x2

Theo Viet ta có:\(x_0x_1=bc;x_0x_2=ca\)

Mà \(x_0=c\ne0\Rightarrow x_1=b;x_2=a\)

Do b;c là các nghiệm của phương trình x2 +ax + bc = 0 nên b+c=-a => -c=a+b => a,b là các nghiệm của phương trình:

x2 - ( a+b ) x + ab = 0 hay x2 + cx + ab = 0

27 tháng 8 2020

Ta có:

\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)

Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)

Khi đó có ít nhất một phương trình có nghiệm

27 tháng 8 2020

còn c/m vô nghiệm thế nào z

20 tháng 5 2019

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_-