K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2019

Điều kiện của phương trình là x ≠ 1. Khi đó ta có

Giải sách bài tập Toán 10 | Giải sbt Toán 10

     (2m + 1)x - m = (x + m)(x - 1)

     x2 - (m + 2)x = 0

     x = 0, x = m + 2

    Giá trị x = m + 2 thỏa mãn điều kiện của phương trình khi m ≠ -1

    Kết luận

    Vậy với m = -1 phương trình có nghiệm duy nhất x = 0;

    Với m ≠ -1 phương trình có hai nghiệm x = 0 và x = m + 2.

2 tháng 4 2017

a) ⇔ (m – 3)x = 2m + 1.

  • Nếu m ≠ 3 phương trình có nghiệm duy nhất x = .
  • Nếu m = 3 phương trình trở thành 0x = 7. Vô nghiệm.

b) ⇔ (m2 – 4)x = 3m – 6.

  • Nếu m2 – 4 ≠ 0 ⇔ m ≠ ± 2, có nghiệm x = .
  • Nếu m = 2, phương trình trở thành 0x = 0, mọi x ∈ R đều nghiệm đúng phương trình.
  • Nếu m = -2, phương trình trở thành 0x = -12. Vô nghiệm.

c) ⇔ 2(m – 1)x = 2(m-1).

  • Nếu m ≠ 1 có nghiệm duy nhất x = 1.
  • Nếu m = 1 mọi x ∈ R đều là nghiệm của phương trình.


15 tháng 2 2017

đặt 1+m=p^2; đk : m>=-1 ; p>=0 (*)

đặt 2x=y

BPT tương đương

\(y^2-\left(p^2+p-1\right)y+\left(p^2-1\right)p< 0\) (1)

xét pt: \(y^2-\left(p^2+p-1\right)y+\left(p^2-1\right)p=0\) (2)

\(\Delta_y=\left(p^2-1+p\right)^2-4p\left(p^2-1\right)=\left(p^2-1\right)^2+2p\left(p^2-1\right)+p^2-4p\left(p^2-1\right)\)

\(\Delta_y=\left(p^2-1-p\right)^2\ge0\) với mọi p theo (*)

Vậy (2) có nghiệm với mọi (p) theo (*)

\(\left[\begin{matrix}y_1=\frac{\left(p^2+p-1\right)-\left(p^2-p-1\right)}{2}=\frac{2p}{2}=p\\y_2=\frac{\left(p^2+p-1\right)+\left(p^2-p-1\right)}{2}=\frac{p^2-2}{2}\end{matrix}\right.\)

xét f(p)=y2-y1= \(\frac{p^2-2}{2}-p=\frac{p^2-p-2}{2}=\frac{\left(p+1\right)\left(p-2\right)}{2}\\ \)

=> \(\left\{\begin{matrix}p=-1;2\Rightarrow f\left(p\right)=0\\-1< p< 2\Rightarrow\\p>2\Rightarrow f\left(p\right)>0\end{matrix}\right.f\left(p\right)< 0}\)

Vậy ta có kết luận(1):

1.Nếu \(P=2\Rightarrow\left(2\right)cóN_0....y_1=y_2\) thì (1) vô Nghiệm

2.Nếu \(0\le P< 2\Rightarrow\left(2\right)cóN_0....y_1>y_2\)=> (1) có nghiệm \(y_2< y< y_1\)

3.Nếu \(P>2\Rightarrow\left(2\right)cóN_0....y_1< y_2\) => (1) có nghiệm \(y_1< y< y_2\)

Bạn làm tiếp phần y--> x ; p--> m

(đơn giải rồi)

17 tháng 2 2017

Mục đích là so sánh y1 và y2 để xem cái nào lớn , nhỏ hay bằng nhau

13 tháng 4 2017

Điều kiện xác định \(x\ge0\).
Do \(\sqrt{x}\ge0\) với mọi \(x\ge0\) nên BPT có nghiệm khi:
\(m-1\le0\Leftrightarrow m\le1\).
vậy ta có các trường hợp sau:
- Nếu \(m\le1\) bất phương trình nghiệm đúng với mọi \(x\ge0\).
- Nếu \(m>1\) bất phương trình vô nghiệm.

7 tháng 4 2017

\(\Leftrightarrow\left(m-2\right)x>m^2-4=\left(m-2\right)\left(m+2\right)\)

nếu m =2 => 0.x > 0.4 => vô nghiệm

Nếu m> 2 => m-2 >0 chia hai vế cho m-2<0

\(\Rightarrow x>m+2\)

Nếu m<2 => m-2 <0 chia hai cho m-2 <0

\(\Rightarrow x< m+2\)

Kết luận:

Nếu m =2 Phương trình vô nghiêm

nếu m> 2 có nghiệm: \(x>m+2\)

nếu m<2 có nghiệm: \(x< m+2\)

17 tháng 5 2017

a) Ta thấy đường thẳng \(y=ax+b\) đi qua hai điểm \(\left(0;3\right)\)\(\left(1;0\right)\). Vậy ta có :

\(\left\{{}\begin{matrix}3=b\\0=a+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=3\end{matrix}\right.\)

Đường thẳng có phương trình là \(y=-3x+3\)

b) \(y=-4x\)

c) \(y=x-2\)

14 tháng 4 2017

Lời giải

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)

(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)

\(\Leftrightarrow8x^2+14mx+3m^2=0\)

\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m

\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)

so sánh (3) với (1)

\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)

m <0 hiển nhiên đúng

xét khi m\(\ge\)0

\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)

Biện luận

(I)với m <0 có hai nghiệm

\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)

(II) với m= 0 có nghiệm kép x=0

(III) m>0 vô nghiệm

 

 

3 tháng 5 2017

b) \(\left|2x+m\right|=\left|x-2m+2\right|\Leftrightarrow\left[{}\begin{matrix}2x+m=x-2m+2\left(1\right)\\2x+m=-\left(x-2m+2\right)\left(2\right)\end{matrix}\right.\)
Xét (1): \(2x+m=x-2m+2\Leftrightarrow x=-3m+2\).
Xét (2): \(2x+m=-\left(x-2m+2\right)\Leftrightarrow x=\dfrac{m-2}{3}\)
Biện luận:
Với mọi m phương trình đều có hai nghiệm:
\(x=-3m+2;x=\dfrac{m-2}{3}\).

29 tháng 12 2016

Bài 1a)

Áp dụng bất đẳng thức Cô-si cho từng cặp ta có

\(\left\{\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ac}\end{matrix}\right.\)

\(=>\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)

\(=>\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\sqrt{\left(abc\right)^2}\)

\(=>\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\) ( điều phải chứng minh )

Bài 1b)

Áp dụng bất đẳng thức Cô-si bộ 3 số cho từng cặp ta có

\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}\end{matrix}\right.\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\left(abc\right)^2}\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9\sqrt[3]{\left(abc\right)^3}\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9abc\) (điều phải chứng minh )

Bài 1c) Ta có

\(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

\(=>1+a+b\left(1+a\right)\left(1+c\right)\ge1^3+3.1^2.\sqrt[3]{abc}+3.1.\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{\left(abc\right)^3}\)

\(=>\left(1+a+b+ab\right)\left(1+c\right)\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)

\(=>1+a+b+ab+c\left(1+a+b+ab\right)\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)

\(=>1+a+b+ab+c+ca+bc+abc\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)

\(=>a+b+c+ab+bc+ca\ge3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}\)

Áp dụng bất đẳng thức Cô-si bộ 3 số cho vế trái ta có

\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\ab+bc+ac\ge3\sqrt[3]{\left(abc\right)^2}\end{matrix}\right.\)

\(=>a+b+c+ab+bc+ac\ge3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}\) (điều phải chứng minh )

29 tháng 12 2016

Bài 2a)

Áp dụng bất đẳng thức Cô-si cho từng cặp ta có

\(\left\{\begin{matrix}\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2\sqrt{c^2}=2c\\\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}.\frac{ab}{c}}=2\sqrt{a^2}=2a\\\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2\sqrt{b^2}=2b\end{matrix}\right.\)

\(=>2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(=>\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\) (điều phải chứng minh )

Bài 2b)

Chứng minh BĐT \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Áp dụng BĐT Cô-si cho vế trái ta có

\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều phải chứng minh )

Ta có \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(=>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\ge\frac{3}{2}+3\)

\(=>\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1\ge\frac{9}{2}\)

\(=>\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)

\(=>\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)

\(=>2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\)

Áp dụng BĐT vừa chứng minh \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(=>\left(b+c+a+c+a+b\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9 \) (Điều phải chứng minh )

4 tháng 5 2017

a) \(m\left(m-6\right)x+m=-8x+m^2-2\)
\(\Leftrightarrow x\left(m^2-6m+8\right)=m^2-m-2\)
- Xét \(m^2-6m+8=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=2\end{matrix}\right.\)
Th1. Thay \(m=4\) vào phương trình ta có:
\(0.x=10\) (vô nghiệm)
Th2. Thay \(m=2\) vào phương trình ta có:
\(0.x=0\) (luôn đúng với mọi \(x\in R\))
- Xét: \(m^2-6m+8\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne4\\m\ne2\end{matrix}\right.\)
Khi đó phương trình có nghiệm duy nhất là:
\(x=\dfrac{m^2-m-2}{m^2-6m+8}\)
Biện luận:
- \(m=4\) phương trình vô nghiệm.
- \(m=2\) phương trình luôn có nghiệm.
- \(m\ne4\)\(m\ne2\) phương trình có nghiệm duy nhất là:
\(x=\dfrac{m^2-m-2}{m^2-6m+8}\)

4 tháng 5 2017

b) Đkxđ: \(x\ne-1\)
\(\dfrac{\left(m-x\right)x+3}{x+1}=2m-1\)\(\Leftrightarrow\left(m-x\right)x+3=\left(2m-1\right)\left(x+1\right)\) \(\Leftrightarrow-x^2+x\left(1-m\right)+4-2m=0\) (*)
Xét (*) có nghiệm \(x=-1\) .
Khi đó: \(-\left(-1\right)^2+\left(-1\right)\left(1-m\right)+4-2m=0\)\(\Leftrightarrow m=2\)
Xét \(m=2\) thay vào phương trình ta có:
\(\dfrac{\left(2-x\right)x+3}{x+1}=2.2-1\Leftrightarrow\left\{{}\begin{matrix}-x^2+2x+3=0\\x\ne-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\x\ne-1\end{matrix}\right.\)\(\Leftrightarrow x=3\)
Vậy với m = 2 thì phương trình có nghiệm x = 3.
Xét \(m\ne2\)
\(\Delta=\left(1-m\right)^2-4.\left(-1\right).\left(4-2m\right)=\)\(m^2-10m+17\)
Nếu \(\Delta=0\Leftrightarrow m^2-10m+17=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=5+2\sqrt{2}\\m=5-2\sqrt{2}\end{matrix}\right.\)
Phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5+2\sqrt{2}\right)}{2}=-2-\sqrt{2}\left(\ne-1\right)\) nếu \(m=5+2\sqrt{2}\).
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5-2\sqrt{2}\right)}{2}=-2+\sqrt{2}\left(\ne-1\right)\)  nếu \(m=5-2\sqrt{2}\).
Nếu \(\Delta>0\Leftrightarrow m^2-10m+17>0\)\(\Leftrightarrow\left(m-5+2\sqrt{2}\right)\left(m-5-2\sqrt{2}>0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}m>5+2\sqrt{2}\\m< 5-2\sqrt{2}\end{matrix}\right.\) thì phương trình có hai nghiệm phân biệt là:
\(x_1=\dfrac{-\left(1-m\right)+\sqrt{m^2-10m+17}}{-2}\)
\(x_1=\dfrac{-\left(1-m\right)-\sqrt{m^2-10m+17}}{-2}\)
Biện luận:
Nếu \(\Delta< 0\Leftrightarrow5-2\sqrt{2}< m< 5+2\sqrt{2}\) thì phương trình vô nghiệm.
Biện luận:
Với \(m=5-2\sqrt{2}\) thì phương trình có nghiệm kép là:
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5-2\sqrt{2}\right)}{2}=-2+\sqrt{2}\)
Với \(m=5-2\sqrt{2}\) thì phương trình có nghiệm kép là:
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5+2\sqrt{2}\right)}{2}=-2-\sqrt{2}\)
Với  m = 2 thì phương trình có duy nhất nghiệm là: x = 3
Với \(m>5+2\sqrt{2}\) hoặc \(m< 5-2\sqrt{2}\) thì phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(1-m\right)+\sqrt{m^2-10m+17}}{-2}\);
\(x_1=\dfrac{-\left(1-m\right)-\sqrt{m^2-10m+17}}{-2}\)
Với \(5-2\sqrt{2}< m< 5+2\sqrt{2}\)  và \(m\ne2\) thì phương trình vô nghiệm.