\(G=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) CMR G nhỏ hơn 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

\(E=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+...+\frac{1}{73\cdot75}\)

\(E=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)

\(\Rightarrow E=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)=\frac{1}{2}\cdot\frac{2}{75}=\frac{1}{75}\)

\(F=\frac{15}{90\cdot94}+\frac{15}{94\cdot98}+...+\frac{15}{146\cdot150}\)

\(F=\frac{15}{4}\cdot\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)

\(\Rightarrow F=\frac{15}{4}\cdot\left(\frac{1}{90}-\frac{1}{150}\right)=\frac{15}{4}\cdot\frac{1}{225}=\frac{1}{60}\)

\(G=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

\(G=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(G=\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+\frac{5}{10\cdot13}+...+\frac{5}{25\cdot28}\)

\(G=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(\Rightarrow G=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}\cdot\frac{3}{14}=\frac{5}{14}\)

5 tháng 7 2017

sao nhiều vậy bạn 

25 tháng 3 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

ĐẶT A= 1/3^2  +  1/4^2 + 1/ 5^2 +......+1/100

TA CÓ:

A=1/3^2  +  1/4^2 +1/5^2 +.....+1/100

=>A=1/3^2  +  1/4^2 +1/5^2 +.....+1/10^2

TA THẤY : 1/3^2 < 1/2.3 ;1/4^2 < 1/3.4;1/5^2 < 1/4.5;....;1/10^2<1/9.10

=>1/3^2  +  1/4^2 +1/5^2 +.....+1/10^2<1/2.3 + 1/3.4 + 1/4.5 +.... +1/9.10

=>A<1/2-1/3 + 1/3 -1/4 + 1/4 - 1/5 +...+1/9-1/10

=>A<1/2-1/10<1/2

=>1/3^2  +  1/4^2 +1/5^2 +.....+1/10^2<1/2

=>1/3^2  +  1/4^2 +1/5^2 +.....+1/100<1/2(ĐPCM)

VẬY 1/3^2  +  1/4^2 +1/5^2 +.....+1/100<1/2

NHỚ K CHO MÌNH NHÉ

22 tháng 4 2017

\(\frac{1}{100^2}\)or\(\frac{1}{100}\) vậy hả bạn

23 tháng 2 2020

 Ta có:\(\frac{1}{2^2}=\frac{1}{4};\frac{1}{3^2}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3};\frac{1}{3^2}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4};.....;\frac{1}{100^2}< \frac{1}{99\cdot100}=\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{3}{4}\left(đpcm\right)\)

Gọi \(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{3}{4}\)

Vì \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{100^2}< \frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< \frac{3}{4}\)

\(\Rightarrow D< \frac{3}{4}\left(đpcm\right)\)

30 tháng 3 2017

bài này hỏi cô giáo thì biết

30 tháng 3 2017

tớ ln đc nhưng dài lém 

9 tháng 3 2017

A=1/2!+1/2!-1/3!+...+1/99!-1/100

  =1/2-1/100

  =49/100

9 tháng 3 2017

A=49/100.