Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{-x-2}{x-1}\in Z\) thì \(-x-2⋮x-1\)
\(\Rightarrow-̣\left(x-1\right)-3⋮x-1̣\)
mà \(-\left(x-1\right)⋮x-1\)
\(\Leftrightarrow\) \(-3⋮x-1\Rightarrow\)\(x-1\in U\left(-3\right)=-1,1,-3,3\)
Ta có bảng
x-1 | -1 | 1 | -3 | 3 |
x | 0 | 2 | -2 | 4 |
Vậy.......
Để \(A=\frac{5}{x-2}\)có giá trị là 1 số nguyên thì:
\(5⋮x-2\)
Vì \(x\in Z\Rightarrow x-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
x-2 | 1 | -1 | 5 | -5 |
x | 3 | 1 | 7 | -3 |
Vậy \(x\in\left\{3;-1;7;-3\right\}\)
Để \(B=\frac{x+2}{x-3}\)có giá trị là 1 số nguyên thì:
\(x+2⋮x-3\)
=> \(\left(x-3\right)+5⋮x-3\)
=> \(5⋮x-3\)
Sau đó tiếp tục lý luận và lập bảng tìm trường hợp như của x trong ý a.
Ý c thì mình đang bị mung lung tí '-'
Để \(P=\frac{x-1}{x-3}\left(x∈Z ; x ≠0\right)\) nhận giá trị nguyên
=> x - 1 ⋮ x - 3
=> ( x - 3 ) + 2 ⋮ x - 3
Mà x - 3 ⋮ x - 3 ∀ x ∈ Z
=> 2 ⋮ x - 3
=> x - 3 ∈ Ư(2)
Ta có bảng ;
x-3 | -2 | -1 | 1 | 2 |
x | -1 | 2 | 4 | 5 |
\(P=\frac{x-1}{x-3}\) | \(\frac{1}{2}\)( loại ) ( do P nhận giá trị nguyên ) | -1 ( t/m ) | 3 ( t/m ) | 2 ( t/m ) |
Để P nhận giá trị nguyên lớn nhất => P = 3 và x = 4
VÌ ( 3 - x )2 ≥ 0 ∀ x ∈ Z
=> ( 3 - x )2 - 4 ≥ 0 - 4
=> Để A = ( 3 - x )2 - 4 nhận giá trị nhỏ nhất thì A = -4
<=> ( 3 - x )2 = 0
<=> 3 - x = 0
<=> x = 3
a)Để A là số nguyên thì x-2 chia hết cho x+1
Do đó ta có:
\(A=\frac{x-2}{x+1}=\frac{x+1+-3}{x+1}=1+\frac{-3}{x+1}\)
\(\Rightarrow x+1\inƯ\left(-3\right)\)
Vậy Ư(-3)là:[1,-1,3,-3]
Ta có bảng sau:
x+1 | -3 | -1 | 1 | 3 |
x | -4 | -2 | 0 | 2 |
Vậy x=-4;-2;0;2
b)Để B là số nguyên thì x+4 chia hết cho x-1
Do đó ta có:
\(A=\frac{x+4}{x-1}=\frac{x-1+5}{x-1}=1+\frac{5}{x-1}\)
\(\Rightarrow x-1\inƯ\left(5\right)\)
Vậy Ư(5)là:[1,-1,5,-5]
Ta có bảng sau:
x-1 | -5 | -1 | 1 | 5 |
x | -4 | 0 | 2 | 6 |
Vậy x=-4;0;2;6
c) Để \(\frac{2x+7}{x+2}\) là số nguyên
\(\Leftrightarrow2x+7⋮x+2\)
\(\Rightarrow\left(2x+4\right)+3⋮x+2\)
\(\Rightarrow2\left(x+2\right)+3⋮x+2\)
\(\Rightarrow\begin{cases}2\left(x+2\right)⋮x+2\\3⋮x+2\end{cases}\)
\(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng sau :
x+2 | -3 | -1 | 1 | 3 |
x | -5 | -3 | -1 | 1 |
Vậy \(x\in\left\{-3;-1;1;3\right\}\)
d) Để \(\frac{2x+9}{x+1}\) là số nguyên
\(\Leftrightarrow2x+9⋮x+1\)
\(\Rightarrow\left(2x+2\right)+7⋮x+1\)
\(\Rightarrow2\left(x+1\right)+7⋮x+1\)
\(\Rightarrow\begin{cases}2\left(x+1\right)⋮x+1\\7⋮x+1\end{cases}\)
\(\Rightarrow x+1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng sau :
x+1 | -7 | -1 | 1 | 7 |
x | -8 | -2 | 0 | 6 |
Vậy \(x\in\left\{-8;-2;0;6\right\}\)
a. Vì A thuộc Z
\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )
b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)
Vì B thuộc Z nên 5 / x - 3 thuộc Z
\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )
c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)
\(=x-2-\frac{2}{x+1}\)
Vi C thuộc Z nên 2 / x + 1 thuộc Z
\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )
A =15/x+2 + 14/x+2 = 29/x+2
b) x+2 là U(29) = { -1;1;-29;29}
=> x ={ -3;-1;-31;27}
Làm khâu rút gọn thôi
\(=\frac{15}{x+2}+\frac{42}{3x+6}\)
\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)
\(=\frac{3.15+42}{3\left(x+2\right)}\)
\(=\frac{87}{3\left(x+2\right)}\)
\(=\frac{29}{x+2}\)
Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm
Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)
Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất
Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(P=2010-\left(x+1\right)^{2008}\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)
\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)
Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)
\(\Rightarrow P=2010-0=2010\)
(Dấu"=" xảy ra <=> \(x=-1\)
Bài 2:
Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)
\(\Rightarrow C=-5\)
Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể
giải :
ta có : \(\frac{x+1}{-x-2}\)= \(\frac{\left(x+2\right)-1}{-\left(x+2\right)}\)= -1 + \(\frac{-1}{-\left(x+2\right)}\)= -1 + \(\frac{1}{x+2}\)
Để biểu thức trên có gt nguyên \(\Rightarrow\)1 \(⋮\)\(\left(x+2\right)\)\(\Rightarrow\)\(\left(x+2\right)\)\(\in\)Ư(1) \(\in\){ 1 ; -1 }
nếu : x+2 = 1 \(\Rightarrow\) x = -1
x+2 = -1 \(\Rightarrow\)x = -3
Vậy x \(\in\){ -1 ; -3 } thì \(\frac{x+1}{-x-2}\)đạt gt nguyên