Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}.3=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
\(\Rightarrow x+3=308\Leftrightarrow x=305\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\\\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\\\frac{1}{x}+\frac{1}{z}=-\frac{1}{y}\end{cases}}\)
\(P=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)
\(=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)
\(=y\left(\frac{1}{x}+\frac{1}{z}\right)+x\left(\frac{1}{z}+\frac{1}{y}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=y.\frac{-1}{y}+x.\frac{-1}{x}+z.\frac{-1}{z}\)
\(=-1-1-1=-3\)
P+3=\(\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1=\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)
P+3=\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0.\left(x+y+z\right)=0\)
=> P=\(-3\)
Chuc ban hoc tot
giải cho đỡ buồn
(6x +6 +4x+4 + 3x+3)/12 =( 6x+6 +5x+5)/30
(13x +13)/12 = (11x+11)/30
đúng là vô số nghiệm
a) \(\left|2x-3\right|-\frac{1}{3}=0\)
\(\Leftrightarrow\left|2x-3\right|=\frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=\frac{1}{3}\\2x-3=-\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=\frac{10}{3}\\2x=\frac{8}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{4}{3}\end{cases}}\)
b) \(\frac{5}{6}-\left|x+\frac{1}{4}\right|=\frac{1}{4}\)
\(\Leftrightarrow\left|x+\frac{1}{4}\right|=\frac{7}{12}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\frac{7}{12}\\x+\frac{1}{4}=-\frac{7}{12}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-\frac{5}{6}\end{cases}}\)
c) \(3-\left|2x+1,5\right|=\frac{5}{4}\)
\(\Leftrightarrow\left|2x+\frac{3}{2}\right|=\frac{7}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{2}=\frac{7}{4}\\2x+\frac{3}{2}=-\frac{7}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=\frac{1}{4}\\2x=-\frac{13}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{8}\\x=-\frac{13}{8}\end{cases}}\)
a. \(\left|2x-3\right|-\frac{1}{3}=0\)
\(\Leftrightarrow\left|2x-3\right|=\frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=\frac{1}{3}\\2x-3=-\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{4}{3}\end{cases}}\)
b. \(\frac{5}{6}-\left|x+\frac{1}{4}\right|=\frac{1}{4}\)
\(\Leftrightarrow\left|x+\frac{1}{4}\right|=\frac{7}{12}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\frac{7}{12}\\x+\frac{1}{4}=-\frac{7}{12}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=-\frac{5}{6}\end{cases}}\)
c. \(3-\left|2x+1,5\right|=\frac{5}{4}\)
\(\Leftrightarrow\left|2x+\frac{3}{2}\right|=\frac{7}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{2}=\frac{7}{4}\\2x+\frac{3}{2}=-\frac{7}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{8}\\x=-\frac{13}{8}\end{cases}}\)
x=15/8