Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)
a: \(A=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}-\dfrac{-2x^2+4x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x\left(x^2+1\right)}{x\left(x+1\right)}\)
\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{\left(x^2+1\right)}{x+1}\)
\(=\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{x+1}=\dfrac{x^2+1}{x+1}\)
Để R=0 thì \(x^2+1=0\)(vô lý)
b: Ta có: |x|=1
=>x=1(loại) hoặc x=-1(loại)
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
a, (3x - 5)(2x - 1) - (x + 2)(6x - 1) = 0
=> 6x^2 - 3x - 10x + 5 - (6x^2 - x + 12x - 2) = 0
=> 6x^2 - 13x + 5 - 6x^2 - 11x + 2 = 0
=> -24x + 7 = 0
=> - 24x = -7
=> x = 7/24
b, (3x - 2)(3x + 2) - (3x - 1)^2 = -5
=> 9x^2 - 4 - 9x^2 + 6x - 1 = -5
=> 6x - 5 = -5
=> 6x = 0
=> x = 0
c, x^2 = -6x - 8
=> x^2 + 6x + 8 = 0
=> x^2 + 2.x.3 + 9 - 1 = 0
=> (x + 3)^2 = 1
=> x + 3 = 1 hoặc x + 3 = -1
=> x = -2 hoặc x = -4
\(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}-\frac{1}{x-1}\)
\(=\frac{\left(x-1\right)^2}{x^2-2x+1+3x}-\frac{1-2x^2+4x}{x^3-1}-\frac{1}{x-1}\)
\(=\frac{\left(x-1\right)^2}{x^2+x+1}-\frac{1-2x^2+4x}{x^3-1}-\frac{1}{x-1}\)
a)\(ĐKXĐ:x\ne1\)
\(MTC:\left(x-1\right)^3=\left(x-1\right)\left(x^2+x+1\right)\)
b)\(\frac{\left(x-1\right)^3}{x^3-1}-\frac{1-2x^2+4x}{x^3-1}-\frac{x^2+x+1}{x^3-1}=0\)
\(\Rightarrow\left(x-1\right)^3-\left(1-2x^2+4x\right)-\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x^3-3x^2+27x-1-1+2x^2-4x-x^2-x-1=0\)
\(\Leftrightarrow x^3-2x^2+22x-3=0\)
ĐẾN ĐÂY THÌ BÍ RỒI T_T