Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\)
\(A=\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\)
\(A=\dfrac{11.3^{29}-3^{29}.3}{2^2.3^{28}}\)
\(A=\dfrac{3^{29}.\left(11-3\right)}{2^2.3^{28}}\)
\(A=\dfrac{3^{29}.8}{2^2.3^{28}}\)
\(A=\dfrac{3.8}{4}=6\)
vậy \(A=6\)
b) \(B=\dfrac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
\(B=\dfrac{3^2.\left(2^2\right)^2.\left(2^{16}\right)^2}{11.2^{13}.\left(2^2\right)^{11}-\left(2^4\right)^9}\)
\(B=\dfrac{3^2.2^4.2^{32}}{11.2^{13}.2^{22}-2^{36}}\)
\(B=\dfrac{3^2.2^{36}}{11.2^{35}-2^{35}.2}\)
\(B=\dfrac{3^2.2^{36}}{2^{35}.\left(11-2\right)}\)
\(B=\dfrac{3^2.2^{36}}{2^{35}.9}\)
\(B=\dfrac{3^2.2}{9}\)
\(B=\dfrac{9.2}{9}\)
\(B=2\)
vậy \(B=2\)
\(A=\frac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=6\)
\(B=\frac{\left(3\cdot4\cdot2^{16}\right)^2}{11\cdot2^{13}\cdot4^{11}-16^9}=2\)
\(C=\frac{4^5\cdot9^{4-2\cdot6^9}}{2^{10}\cdot3^8+6^8\cdot20}=0\)
A=\(\frac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=6\)
1.\(\left(-\frac{6}{5}+\frac{6}{16}-\frac{6}{23}\right):\left(\frac{9}{5}-\frac{9}{16}+\frac{9}{23}\right)\)
\(=6\left(-\frac{1}{5}+\frac{1}{16}-\frac{1}{23}\right):\left(-9\right)\left(\frac{-1}{5}+\frac{1}{16}-\frac{1}{23}\right)\)
\(=6:\left(-9\right)=-\frac{2}{3}\)
2. \(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{0.5-\frac{1}{3}+\frac{1}{4}}{-\frac{3}{2}+1-\frac{3}{4}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{-3\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}-\frac{1}{3}\)
\(=\frac{9}{13}-\frac{5}{15}=\frac{4}{15}\)
a,9!-8!-7!.8^2
=362880-40320-5040.64
=322560-5040.64
=317520.64
=20321280
b,\(\frac{\left(3.4.2^{16}\right)^2}{11\cdot2^{13}.4^{11}.16^9}=\frac{\left(3^{16}.4^{16}.2^{16}\right)^2}{11.2^{13}.\left(2^2\right)^{11}.\left(2^4\right)^9}=\frac{3^{32}.4^{32}.2^{32}}{11.2^{13}.2^{22}.2^{36}}=\frac{3^{32}.\left(2^2\right)^{32}.2^{32}}{11.2^{71}}=\frac{3^{32}.2^{64}.2^{32}}{11.2^{71}}=\frac{3^{32}.2^{96}}{11.2^{71}}=\frac{3^{32}.2^{71}.2^{25}}{11.2^{71}}=\frac{3^{32}.2^{25}}{11}\)