Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge0;x\ne1\)
Ta có: \(P=\text{[}\frac{\sqrt{x}-2}{x-1}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\text{]}\left(\frac{1-x}{\sqrt{2}}\right)^2\)
\(=\text{[}\frac{\sqrt{x}-2}{x-1}-\frac{x+\sqrt{x}-2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\text{]}\frac{\left(x-1\right)^2}{2}\)
\(=\left(\sqrt{x}-2-\frac{x+\sqrt{x}-2}{\sqrt{x}+1}\right)\frac{x-1}{2}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(x+\sqrt{x}-2\right)}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2}\)
\(-2\sqrt{x}.\frac{\sqrt{x}-1}{2}\)\(=\sqrt{x}-x\)
a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))
b \(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))
ĐKXĐ;\(x\ge0\)và \(x\ne1\)
P=\(\left[\frac{x+2}{\left(\sqrt{x}\right)^3-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right].\frac{2}{\sqrt{x}-1}\)
=\(\frac{x+2+\sqrt{x}.\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)
=\(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)=\(\frac{2}{x+\sqrt{x}+1}\)
Ta có \(P^2=\frac{4}{\left(x+\sqrt{x}+1\right)^2}\);\(2P=\frac{4}{x+\sqrt{x}+1}\)
Với \(x\ge0\)và \(x\ne1\)thì \(x+\sqrt{x}+1\le\left(x+\sqrt{x}+1\right)^2\)
\(\Rightarrow\frac{4}{x+\sqrt{x}+1}\ge\frac{4}{\left(x+\sqrt{x}+1\right)^2}\)
Vậy \(P^2\le2P\)
Mình cảm ơn bạn có thể giải hộ mình bài này được ko
Cho phương trình \(x^2-\left[2m+1\right]x+m^2+m-6=0\)
Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn trị tuyệt đối của \(x^3_1-x^3_2=35\)
Vậy cái điều kiện \(x\ne\sqrt{3}\)người ta cho chi bạn. Bạn nên để ý là cái điều kiện người ta cho là nhằm cho cái đó nó xác định chớ không cho tào lao đâu. x # 0 cũng là vì lý do đó nên mình chắc cái đề trong sách in sai
Với điều kiện kèm theo thì mình chắc rằng cái đề phải là x - \(\sqrt{27}\) chứ không thể lad x - 27 được. Bạn xem lại đề nhé
\(\frac{x^2+5x+x\sqrt{9-x^2}+6}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}\left(DK:-3\le x< 3\right)\)
\(=\frac{\left(x+2\right)\left(x+3\right)+x\sqrt{\left(3-x\right)\left(3+x\right)}}{x\left(3-x\right)+\left(x+2\right)\sqrt{\left(3-x\right)\left(3+x\right)}}\)
\(=\frac{\sqrt{x+3}\left[\sqrt{x+3}\left(x+2\right)+x\sqrt{3-x}\right]}{\sqrt{3-x}\left[x\sqrt{3-x}+\left(x+2\right)\sqrt{x+3}\right]}=\frac{\sqrt{x+3}\left(x\sqrt{x+3}+2\sqrt{x+3}+x\sqrt{3-x}\right)}{\sqrt{3-x}\left(x\sqrt{x+3}+2\sqrt{x+3}+x\sqrt{3-x}\right)}=\frac{\sqrt{x+3}}{\sqrt{3-x}}=\sqrt{\frac{x+3}{3-x}}\)