K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

ĐK: \(x\ge0;x\ne1\)

Ta có: \(P=\text{[}\frac{\sqrt{x}-2}{x-1}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\text{]}\left(\frac{1-x}{\sqrt{2}}\right)^2\)

\(=\text{[}\frac{\sqrt{x}-2}{x-1}-\frac{x+\sqrt{x}-2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\text{]}\frac{\left(x-1\right)^2}{2}\)

\(=\left(\sqrt{x}-2-\frac{x+\sqrt{x}-2}{\sqrt{x}+1}\right)\frac{x-1}{2}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(x+\sqrt{x}-2\right)}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2}\)

\(-2\sqrt{x}.\frac{\sqrt{x}-1}{2}\)\(=\sqrt{x}-x\)

23 tháng 5 2017

Coi có sai đề k

2 tháng 9 2017

a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))

2 tháng 9 2017

\(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))

28 tháng 6 2017

ĐKXĐ;\(x\ge0\)và \(x\ne1\)

P=\(\left[\frac{x+2}{\left(\sqrt{x}\right)^3-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right].\frac{2}{\sqrt{x}-1}\)

=\(\frac{x+2+\sqrt{x}.\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)

=\(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)=\(\frac{2}{x+\sqrt{x}+1}\)

Ta có \(P^2=\frac{4}{\left(x+\sqrt{x}+1\right)^2}\);\(2P=\frac{4}{x+\sqrt{x}+1}\)

Với \(x\ge0\)và \(x\ne1\)thì \(x+\sqrt{x}+1\le\left(x+\sqrt{x}+1\right)^2\)

\(\Rightarrow\frac{4}{x+\sqrt{x}+1}\ge\frac{4}{\left(x+\sqrt{x}+1\right)^2}\)

Vậy \(P^2\le2P\)

28 tháng 6 2017

Mình cảm ơn bạn có thể giải hộ mình bài này được ko 

        Cho phương trình \(x^2-\left[2m+1\right]x+m^2+m-6=0\)

             Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn trị tuyệt đối của \(x^3_1-x^3_2=35\)

28 tháng 10 2016

Vậy cái điều kiện \(x\ne\sqrt{3}\)người ta cho chi bạn. Bạn nên để ý là cái điều kiện người ta cho là nhằm cho cái đó nó xác định chớ không cho tào lao đâu. x # 0 cũng là vì lý do đó nên mình chắc cái đề trong sách in sai

28 tháng 10 2016

Với điều kiện kèm theo thì mình chắc rằng cái đề phải là x - \(\sqrt{27}\) chứ không thể lad x - 27 được. Bạn xem lại đề nhé

1 tháng 6 2016

\(\frac{x^2+5x+x\sqrt{9-x^2}+6}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}\left(DK:-3\le x< 3\right)\)

\(=\frac{\left(x+2\right)\left(x+3\right)+x\sqrt{\left(3-x\right)\left(3+x\right)}}{x\left(3-x\right)+\left(x+2\right)\sqrt{\left(3-x\right)\left(3+x\right)}}\)

\(=\frac{\sqrt{x+3}\left[\sqrt{x+3}\left(x+2\right)+x\sqrt{3-x}\right]}{\sqrt{3-x}\left[x\sqrt{3-x}+\left(x+2\right)\sqrt{x+3}\right]}=\frac{\sqrt{x+3}\left(x\sqrt{x+3}+2\sqrt{x+3}+x\sqrt{3-x}\right)}{\sqrt{3-x}\left(x\sqrt{x+3}+2\sqrt{x+3}+x\sqrt{3-x}\right)}=\frac{\sqrt{x+3}}{\sqrt{3-x}}=\sqrt{\frac{x+3}{3-x}}\)