K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: (3,0 điểm). Giải các phương trình:a) \(3x+5=2x+2\).b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\).c) \(\left|x-3\right|+1=2x-7\).Câu 2: (2,0 điểm). a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số: \(5x-15>x+15\).b) Giải bất phương trình \(\frac{8-4x}{3}>\frac{12-x}{5}\). Từ đó tìm số nguyên x lớn nhất thỏa mãn bất phương trình trên.Câu 3: (1,0 điểm). Một người...
Đọc tiếp

Câu 1: (3,0 điểm). Giải các phương trình:

a) \(3x+5=2x+2\).

b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\).

c) \(\left|x-3\right|+1=2x-7\).

Câu 2: (2,0 điểm). 

a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số: \(5x-15>x+15\).

b) Giải bất phương trình \(\frac{8-4x}{3}>\frac{12-x}{5}\). Từ đó tìm số nguyên x lớn nhất thỏa mãn bất phương trình trên.

Câu 3: (1,0 điểm). Một người đi xe máy từ A đến B với vận tốc 60 km/h, rồi quay trở về A với vận tốc 50 km/h. Biết rằng thời gian đi từ A đến B ít hơn thời gian lúc về là 48 phut. Tính quãng đường từ A đến B.

Câu 4: (3,0 điểm). Cho \(\Delta ABC\)nhọn, các đường cao AD, BE, CF cắt nhau tại H.

a) Chứng minh rằng \(\Delta AEB~\Delta AFC\). Từ đó suy ra: \(AF.AB=AE.AC\).

b) Chứng minh: \(HE.HB=HF.HC\)\(\widehat{BEF}=\widehat{BCF}\).

c) Chứng minh: \(\frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA}=1\).

Câu 5: (1,0 điểm).

a) Chứng minh: Với mọi a, b ta có: \(a^2+b^2+1\ge ab+a+b\).

b) Giải phương trình: \(\left(3x+4\right)\left(x+1\right)\left(6x+7\right)^2=6\).

 

5
8 tháng 5 2021

Câu 1: (3,0 điểm). Giải các phương trình:

a) \(3x+5=2x+2\).

\(\Leftrightarrow3x-2x=2-5\).

\(\Leftrightarrow x=-3\).

Vậy phương trình có tập nghiệm: \(S=\left\{-3\right\}\).

b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\left(ĐKXĐ:x\ne-1;x\ne2\right)\).

\(\Leftrightarrow\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\).

\(\Rightarrow x-5=4x-8+3x+3\).

\(\Leftrightarrow x-4x-3x=-8+3+5\).

\(\Leftrightarrow-6x=0\).

\(\Leftrightarrow x=0\)(thỏa mãn ĐKXĐ).

Vậy phương trình có tập nghiệm: \(S=\left\{0\right\}\).

8 tháng 5 2021

c) \(\left|x-3\right|+1=2x-7\)

- Xét \(x-3\ge0\Leftrightarrow x\ge3\). Do đó \(\left|x-3\right|=x-3\). Phương trình trở thành:

\(x-3+1=2x-7\).

\(\Leftrightarrow x-2=2x-7\).

\(\Leftrightarrow x-2x=-7+2\).

\(\Leftrightarrow-x=-5\).

\(\Leftrightarrow x=5\)(thỏa mãn).

- Xét \(x-3< 0\Leftrightarrow x< 3\)Do đó \(\left|x-3\right|=3-x\). Phương trình trở thành:

\(3-x+1=2x-7\).

\(\Leftrightarrow4-x=2x-7\).

\(-x-2x=-7-4\).

\(\Leftrightarrow-3x=-11\).

\(\Leftrightarrow x=\frac{-11}{-3}=\frac{11}{3}\)(loại).

Vậy phương trình có tập nghiệm: \(S=\left\{5\right\}\).

Câu 2: (2,0 điểm). 

a) \(5x-5>x+15\).

\(\Leftrightarrow5x-x>15+5\).

\(\Leftrightarrow4x>20\).

\(\Leftrightarrow x>5\).

Vậy bất phương trình có tập nghiệm: \(\left\{x|x>5\right\}\).

b) \(\frac{8-4x}{3}>\frac{12-x}{5}\).

\(\Leftrightarrow\frac{5\left(8-4x\right)}{15}>\frac{3\left(12-x\right)}{15}\).

\(\Leftrightarrow40-20x>36-3x\).

\(\Leftrightarrow-20x+3x>36-40\).

\(\Leftrightarrow-17x>-4\).

\(\Leftrightarrow x< \frac{4}{17}\)\(\Leftrightarrow x< 0\frac{4}{17}\).

\(\Rightarrow\)Số nguyên x lớn nhất thỏa mãn bất phương trình trên là: \(x=0\).

Vậy \(x=0\).

7 tháng 3 2018

2)  Gọi x = AB , C là điểm ô tô tăng tốc

=> thời gian dự định đi hết AB là \(\frac{x}{40}\)

Quãng đường ô tô đi với vận tốc 40km/h là AC \(=\frac{1}{2}-60\)

Thời gian đi là \(\left(\frac{x}{2}-60\right):40\)

Quãng đường ô tô đi với vận tốc 50km/h là CB =\(\frac{x}{2}+60\)

=> thời gian đi là \(\frac{\left(\frac{x}{2}+60\right)}{50}\)

Vì đến sớm hơn 1 giờ nên có pt :  \(\frac{\left(\frac{x}{2}-60\right)}{40}+\frac{\left(\frac{x}{2}+60\right)}{50}=\frac{x}{40}-1\)

=> x = 2 × 40 + 50 − 60 + 60 = 280

=> x = 280 

7 tháng 3 2018

Đúng k bạn

28 tháng 4 2016

1.   a. x= -5

b. x= -2 hoặc x=3

c.  x=1

d.  x < hoặc = 1/ -4

e.  x < hoặc = 2

f.   x < hoặc = 6/-5

2,  a.  AB= 90 km

     b.  AB= 80 km

                         

     

     

  

28 tháng 4 2016

Bạn ơi bạn nói rõ cách làm đi :((

31 tháng 1 2021

Gọi vận tốc đi v1 (km/h) ; vận tốc về v2 (km/h) ; thời gian đi là t1 (h), thời gian về là t2 (h) ; Quãng đường AB là S (km)

Đổi 30 phút = 1/2 giờ 

Ta có : t1 = 4 (h)

=> t2 = 4 - 1/2 = 3,5 (h)

Lại có v2 - v1 = 5

=> \(\frac{S}{t_2}-\frac{S}{t_1}=5\)

=> \(S\left(\frac{1}{t^2}-\frac{1}{t^1}\right)=5\)

=> \(S\left(\frac{1}{3.5}-\frac{1}{4}\right)=5\)

=> \(S.\frac{0,5}{14}=5\)

=> S = 140 (km)

Vậy quãng đường AB dài 140 km

1. Một người đi xe máy khởi hành từ A đến B với vận tốc 30km/h. Lúc về người đó đi với vận tốc ít hơn vận tốc lúc đi là 6km/h. Vì vậy, thời gian lúc đi ít hơn thời gian lúc về là 30 phút. Tính quãng đường AB ? Nếu gọi x(km) là quãng đường AB thì thời gian xe máy đi từ A đến B là2. Một người đi xe máy khởi hành từ A đến B với vận tốc 30km/h. Lúc về người đó đi với vận tốc...
Đọc tiếp

1. Một người đi xe máy khởi hành từ A đến B với vận tốc 30km/h. Lúc về người đó đi với vận tốc ít hơn vận tốc lúc đi là 6km/h. Vì vậy, thời gian lúc đi ít hơn thời gian lúc về là 30 phút. Tính quãng đường AB ?
 Nếu gọi x(km) là quãng đường AB thì thời gian xe máy đi từ A đến B là

2. Một người đi xe máy khởi hành từ A đến B với vận tốc 30km/h. Lúc về người đó đi với vận tốc ít hơn vận tốc lúc đi là 6km/h. Vì vậy, thời gian lúc đi ít hơn thời gian lúc về là 30 phút. Tính quãng đường AB ? 
Nếu gọi x(km) là quãng đường AB thì thời gian xe máy đi từ B về A là:

3. Một người đi xe máy khởi hành từ A đến B với vận tốc 30km/h. Lúc về người đó đi với vận tốc ít hơn vận tốc lúc đi là 6km/h. Vì vậy, thời gian lúc đi ít hơn thời gian lúc về là 30 phút. Tính quãng đường AB ? 
Nếu gọi x(km) là quãng đường AB, thì phương trình của bài toán là:

4.Một người đi xe máy khởi hành từ A đến B với vận tốc 30km/h. Lúc về người đó đi với vận tốc ít hơn vận tốc lúc đi là 6km/h. Vì vậy, thời gian lúc đi ít hơn thời gian lúc về là 30 phút. Tính quãng đường AB ? 
Nếu gọi thời gian lúc đi là x (giờ) với x >0, thì phương trình của bài toán là:

 

0
26 tháng 3 2022
26 tháng 3 2022
Gọi độ dài quãng đường AB là x ( km) , ( x>0)
Thời gian xe máy từ A đến B với vận tốc  35km/h là 
x/35 (h) 
Thời gian người đó đi với vận tốc  là 40km/h là 
x/40 (h) 
Lúc về người đó đi với vận tốc  là 40km/h nên thời gian về nhanh hơn thời gian đi là 30 phút = 1/2 giờ  nên 
x/35 - x/40 = 1/2 
=) 8x / 280 - 7x/280 = 140/280 
=) x = 140 
vậy AB = 140 km
15 tháng 3 2022

Đổi 30 phút = \(\dfrac{1}{2}\) (giờ)

Gọi x (km) là quãng đường từ A đến B (ĐK : x > 0)

Thời gian đi : \(\dfrac{x}{30}\left(h\right)\)

Thời gian về : \(\dfrac{x}{40}\left(h\right)\)

Vì thời gian về ít hơn thời gian đi 30 phút nên ta có pt:

\(\dfrac{x}{40}+\dfrac{x}{30}=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{3x}{120}+\dfrac{4x}{120}=\dfrac{60}{120}\)

\(\Leftrightarrow7x=60\)

\(\Leftrightarrow x=\dfrac{60}{7}\) (N)

Vậy : quãng đường AB dài \(\dfrac{60}{7}\left(km\right)\)

 

23 tháng 4 2016

Gọi quãng đường AB là x

=> Thời gian lúc đi là x/25

     Thời gian lúc về là x/ 30

Vì thời gian về ít hơn thời gian đi là 20 phút = 1/3 h, nên ta có pt sau

      x/25 - x/30 = 1/3

<=>6x/150 - 5x/ 150 = 50/ 150

<=> 6x - 5x = 50

<=> x= 50

Vậy quãng đường AB dài 50 km