Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= \(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+....+\left(1+\frac{1}{90}\right)\)
= \(\left(1+1+1+....+1\right)+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}\right)\)(9 số 1)
= 9 + \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\right)\)
= \(9+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
= \(9+\left(1-\frac{1}{10}\right)=9+\frac{9}{10}=\frac{90}{10}+\frac{9}{10}=\frac{99}{10}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+...+\frac{1}{9\times10}+\frac{1}{10\times11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)
1/6 + 1/12 + 1/20 + ... + 1/110
= 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/10.11
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/10 - 1/11
= 1/2 - 1/11
= 9/22
1/2+1/6+1/12+...+1/110
=1/1.2+1/2.3+1/3.4+...+1/10.11
=1-1/2+1/2-1/3+1/3-1/4+...+1/10-1/11
=1-1/11=10/11
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{10\cdot11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
= 1/2.3 +1/3.4+1/4.5+...+1/10.11
=1/2-1/3+1/3-1/4+1/4-1/5+...+1/10-1/11
=1/2-1/11
=9/22
~~~~~~~~~~~~ chúc bạn học thật giỏi~~~~~~~~~~~~~
Gọi tổng dãy số hạng trên là A
A = 1 + \(\frac{1}{2}\)+ 1 + \(\frac{1}{6}\)+ 1 + \(\frac{1}{12}\)+ ... + 1 + \(\frac{1}{90}\)+ 1 + \(\frac{1}{110}\)
Mà từ \(\frac{1}{2}\)đén \(\frac{1}{110}\) có 10 số
A = 1 x 10 + \(\frac{1}{2}\)+( \(\frac{1}{2}\)- \(\frac{1}{3}\)) + ( \(\frac{1}{3}\)-\(\frac{1}{4}\)) + (\(\frac{1}{4}\)-\(\frac{1}{5}\)) + ... + \(\frac{1}{11}\)
A = 10 + \(\frac{1}{2}\)+ \(\frac{1}{2}\)+ \(\frac{1}{11}\)= \(\frac{112}{11}\)