Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
TL:
a)
\(\frac{14\left(x-3\right)}{21}+\frac{7\left(x-5\right)}{21}=\frac{13x+4}{21}\)
\(\frac{14x-42+7x-35}{21}=\frac{13x+4}{21}\)
21x-77=13x+4
21x-13x=77+4
8x=81
x=\(\frac{81}{8}\)
2 câu còn lại bn lm cách tương tự
hc tốt
1. \(\frac{x-1}{2}-\frac{x+1}{15}-\frac{2x-13}{6}=0\)
\(\Leftrightarrow\frac{x-1}{2}.30-\frac{x+1}{15}.30-\frac{2x-13}{6}.30=0.30\)
\(\Leftrightarrow15\left(x-1\right)-2\left(x+1\right)-5\left(2x-13\right)=0\)
\(\Leftrightarrow3x+48=0\)
\(\Leftrightarrow3x=0-48\)
\(\Leftrightarrow3x=-48\)
\(\Leftrightarrow x=\frac{-48}{3}=-16\)
=> x = -16
Giải phương trình
a) \(\frac{2x}{x-1}-\frac{x}{x-2}=\frac{x^2}{\left(x-1\right)\left(x-2\right)}\left(x\ne1,x\ne2\right)\)
\(\Leftrightarrow\frac{2x\left(x-2\right)-x\left(x-1\right)-x^2}{\left(x-1\right)\left(x-2\right)}=0\)
\(\Rightarrow2x^2-x^2-x^2-4x+x=0\)
\(\Leftrightarrow-3x=0\Leftrightarrow x=0\left(tm\right)\)
KL: Vậy...
b)\(\frac{1}{x+2}-\frac{6}{x-1}+\frac{8}{\left(x+2\right)\left(x-1\right)}=0\left(x\ne-2,x\ne1\right)\)
\(\Leftrightarrow\frac{\left(x-1\right)-6\left(x+2\right)+8}{\left(x+2\right)\left(x-1\right)}=0\)
\(\Rightarrow x-1-6x-12+8=0\)
\(\Leftrightarrow-5x=-7\Leftrightarrow x=\frac{7}{5}\left(tm\right)\)
c) \(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x+3\right)\left(x-1\right)}\left(x\ne-3,x\ne1\right)\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)-\left(x+1\right)\left(x+3\right)-4}{\left(x+3\right)\left(x-1\right)}=0\)
\(\Rightarrow x^2+x-2-x^2-4x-3-4=0\)
\(\Leftrightarrow-3x=9\Leftrightarrow x=-3\left(ktm\right)\)
a) ĐKXĐ: \(x\ne-1;x\ne2\)
Ta có: \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
⇔\(\frac{1}{x+1}-\frac{5}{x-2}+\frac{15}{\left(x+1\right)\left(x-2\right)}=0\)
⇔\(\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{15}{\left(x+1\right)\left(x-2\right)}=0\)
⇔\(x-2-5x-5+15=0\)
⇔\(-4x+8=0\)
⇔\(-4x=-8\)
⇔\(x=\frac{-8}{-4}=2\)(loại)
Vậy: x không có giá trị
b) ĐKXĐ: \(x\ne0;x\ne\frac{3}{2}\)
Ta có: \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
⇔\(\frac{x}{\left(2x-3\right)\cdot x}-\frac{3}{x\left(2x-3\right)}-\frac{5\left(2x-3\right)}{x\left(2x-3\right)}=0\)
⇔\(x-3-10x+15=0\)
⇔\(-9x+12=0\)
⇔\(-9x=-12\)
⇔\(x=\frac{-12}{-9}=\frac{4}{3}\)
Vậy: \(x=\frac{4}{3}\)
c) ĐKXĐ:\(x\ne3;x\ne1\)
Ta có: \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)
⇔\(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2\left(x-3\right)}\)
⇔\(\frac{6}{x-1}-\frac{4}{x-3}=\frac{4}{x-3}\)
⇔\(\frac{6}{x-1}-\frac{4}{x-3}-\frac{4}{x-3}=0\)
⇔\(\frac{6}{x-1}-\frac{8}{x-3}=0\)
⇔\(\frac{6\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}-\frac{8\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}=0\)
⇔\(6\left(x-3\right)-8\left(x-1\right)=0\)
⇔6x-18-8x+8=0
⇔-2x-10=0
⇔-2(x+5)=0
Vì 2≠0 nên x+5=0
hay x=-5
Vậy: x=-5
\(\frac{2}{x^2-4}-\frac{x-1}{x\left(x-2\right)}+\frac{x-4}{x\left(x+2\right)}=0\)Đk \(x\ne\pm2;x\ne0\)
\(\Rightarrow\frac{2}{\left(x-2\right)\left(x+2\right)}-\frac{x-1}{x\left(x-2\right)}+\frac{x-4}{x\left(x+2\right)}=0\)
\(\Rightarrow\frac{2x-\left(x-1\right)\left(x+2\right)+\left(x-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=0\)
\(\Rightarrow2x-\left(x-1\right)\left(x+2\right)+\left(x-4\right)\left(x-2\right)=0\)
\(\Rightarrow2x-x^2-x+2+x^2-6x+8=0\)
\(\Rightarrow-5x+10=0\)
\(\Rightarrow-5x=-10\)
\(\Rightarrow x=2\)Loại
Ko có gt x thỏa mãn
\(\frac{1}{3-x}-\frac{1}{x+1}=\frac{x}{x-3}-\frac{\left(x-1\right)^2}{x^2-2x-3}\)
\(\Rightarrow\frac{1}{3-x}-\frac{1}{x+1}=\frac{x}{x-3}-\frac{\left(x-1\right)^2}{x^2-3x+x-3}\)
\(\Rightarrow\frac{1}{3-x}-\frac{1}{x+1}=\frac{x}{x-3}-\frac{\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}\)Đk \(x\ne3;x\ne-1\)
\(\Leftrightarrow\frac{1}{3-x}-\frac{1}{x+1}-\frac{x}{x-3}-\frac{\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}=0\)
\(\Rightarrow-\frac{1}{x-3}-\frac{1}{x+1}-\frac{x}{x-3}+\frac{\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}=0\)
\(\Rightarrow\frac{-1\left(x+1\right)-1\left(x-3\right)-x\left(x+1\right)+\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}=0\)
\(\Rightarrow-\left(x+1\right)-\left(x-3\right)-x\left(x+1\right)+\left(x-1\right)^2=0\)
\(\Rightarrow x-1-x+3-x^2-x+x^2-2x+1=0\)
\(\Rightarrow-3x+3=0\)
\(\Rightarrow-3x=-3\)
\(\Rightarrow x=1\)