Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{7}+\frac{6}{7}:\frac{3}{7}\)
\(=\frac{1}{7}+\frac{6}{7}.\frac{7}{3}\) (nhân nghịch đảo)
\(=\frac{1}{7}+2\)
\(=\frac{15}{7}\)
b) \(\frac{4}{5}-\frac{1}{5}.\left(-3\right)\)
\(=\frac{4}{5}-\left(-\frac{3}{5}\right)\)
\(=\frac{7}{5}\)
c) \(\frac{3}{7}+\left(\frac{-5}{2}\right)-\left(-\frac{3}{5}\right)\)
\(=\frac{3}{7}-\left(-\frac{5}{2}\right)+\frac{3}{5}\)
\(=\frac{30}{70}+\frac{175}{70}+\frac{42}{70}\)
\(=\frac{30+175+42}{70}\)
\(=\frac{247}{70}\)
d) viết lại đề hộ mình nhé
\(\frac{a}{b}=\frac{3}{5};\frac{b}{c}=\frac{4}{7}\)
\(=>\frac{a}{b}=\frac{12}{20};\frac{b}{c}=\frac{20}{35}\)
\(=>\frac{a}{12}=\frac{b}{20};\frac{b}{20}=\frac{c}{35}\)
\(=>\frac{a}{12}=\frac{b}{20}=\frac{c}{35}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ....
Tự làm nốt nhé :v
\(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\Rightarrow\frac{a}{12}=\frac{b}{20}\)
\(\frac{b}{c}=\frac{4}{7}\Rightarrow\frac{b}{4}=\frac{c}{7}\Rightarrow\frac{b}{20}=\frac{c}{35}\)
\(\Rightarrow\frac{a}{12}=\frac{b}{20}=\frac{c}{35}\)
den day tu ap dung
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-z}{5+4-3}=\dfrac{18}{6}=3\)
Do đó: x=15; y=12; z=9
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{7}=\dfrac{a+2b+c}{5+2\cdot4+7}=\dfrac{10}{20}=\dfrac{1}{2}\)
Do đó: a=5/2; b=2; c=7/2
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a+b}{4+5}=\dfrac{10}{9}\)
Do đó: a=40/9; b=50/9; c=20/9
f: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a+b-c}{2\cdot2+3-4}=\dfrac{-12}{3}=-4\)
Do đó: a=-8; b=-12; c=-16
i) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\begin{cases}a=2k\\b=3k\\c=4k\end{cases}\)
Vì a3 + b3 + c3 = 792 => 8k3 + 27k3 + 64k3 = 792 => 99k3 = 792 => k3 = 8 => k = 2
=> \(\begin{cases}a=4\\b=6\\c=8\end{cases}\)
Bài g tương tự bài i
e) Từ 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\)
Đặt \(k=\frac{a}{7}=\frac{b}{3}\Rightarrow\begin{cases}a=7k\\b=3k\end{cases}\)
Vì a2 - b2 = 160 => 49k2 - 9k2 = 160 => 40k2 = 160 => k = 2 hoặc -2
Với k = 2 => \(\begin{cases}a=14\\b=6\end{cases}\)
Với k = -2 => \(\begin{cases}a=-14\\b=-6\end{cases}\)
1)
Ta có : \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)=> \(\frac{a^2}{9}=\frac{b^2}{16}=\frac{c^2}{25}\)=> \(\frac{a^2}{9}=\frac{2b^2}{32}=\frac{c^2}{25}\)
Đặt \(\frac{a^2}{9}=\frac{2b^2}{32}=\frac{c^2}{25}=k\)
=> \(\hept{\begin{cases}a^2=9k\\2b^2=32k\\c^2=25k\end{cases}}\)
=> \(a^2+2b^2-c^2=9k+32k-25k=16k\)
=> \(16k=144\)
=> \(k=9\)
Do đó \(\hept{\begin{cases}a^2=9\cdot9\\2b^2=32\cdot9\\c^2=25\cdot9\end{cases}}\Rightarrow\hept{\begin{cases}a^2=81\\b^2=144\\c^2=225\end{cases}}\Rightarrow\hept{\begin{cases}a=9\\b=12\\c=15\end{cases}}\)
2) Ta có : \(\frac{a}{5}=\frac{b}{7}=\frac{c}{9}\)=> \(\frac{a^2}{25}=\frac{b^2}{49}=\frac{c^2}{81}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a^2}{25}=\frac{b^2}{49}=\frac{c^2}{81}=\frac{a^2+b^2-c^2}{25+49-81}=\frac{-28}{-7}=4\)
=> \(\hept{\begin{cases}\frac{a^2}{25}=4\\\frac{b^2}{49}=4\\\frac{c^2}{81}=4\end{cases}}\Rightarrow\hept{\begin{cases}a^2=100\\b^2=196\\c^2=324\end{cases}}\Rightarrow\hept{\begin{cases}a=10\\b=14\\c=18\end{cases}}\)
a) đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
đặt \(a^2+2b^2-c^2=144\)
\(\Leftrightarrow\left(3k\right)^2+2\left(4k\right)^2-\left(5k\right)^2=144\)
\(\Leftrightarrow9k^2+32k^2-25k^2=144\)
\(\Leftrightarrow k^2\left(9+32-25\right)=144\)
\(\Leftrightarrow k^216=144\)
\(\Leftrightarrow k^2=9\)
\(\Leftrightarrow k=\sqrt{9}=\pm3\)
do đó
\(\frac{a}{3}=k\Leftrightarrow\frac{a}{3}=\pm3\Rightarrow\hept{\begin{cases}a=3.3=9\\a=3.\left(-3\right)=-9\end{cases}}\)
\(\frac{b}{4}=k\Leftrightarrow\frac{b}{4}=\pm3\Rightarrow\hept{\begin{cases}b=4.3=12\\b=4.\left(-3\right)=-12\end{cases}}\)
\(\frac{c}{5}=k\Leftrightarrow\frac{c}{5}=\pm3\Rightarrow\hept{\begin{cases}c=5.3=15\\c=5.\left(-3\right)=-15\end{cases}}\)
vậy các cặp a,b,c thỏa mãn là \(\left\{a=9;b=12;c=15\right\}\left\{a=-9;b=-12;c=-15\right\}\)