Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(D=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{120\sqrt{121}+121\sqrt{120}}\)
Với mọi \(n\inℕ^∗\)ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{[\left(n+1\right)\sqrt{n}]^2-\left(n\sqrt{n+1}\right)^2}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\left(\sqrt{n}+1\right)}{n\left(n+1\right)\left(n+1-n\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}}{n\left(n+1\right)}-\frac{n\sqrt{n+1}}{n\left(n+1\right)}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(\Rightarrow D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}+....+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}\)
\(=1-\frac{1}{\sqrt{121}}=\frac{10}{11}\)
Bài 1: chắc lại phải "liên hợp" gì đó rồi:V
\(\sqrt{2009}-\sqrt{2008}=\frac{1}{\sqrt{2009}+\sqrt{2008}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Đó \(\sqrt{2009}+\sqrt{2008}>\sqrt{2007}+\sqrt{2006}\)
Nên \(\sqrt{2009}-\sqrt{2008}< \sqrt{2007}-\sqrt{2006}\)
Tổng quát ta có bài toán sau, với So sánh \(\sqrt{n}-\sqrt{n-1}\text{ và }\sqrt{n-2}-\sqrt{n-3}\)
Với \(n\ge3\). Lời giải xin mời các bạn:)
Xét BĐT sau với a,b >0 : \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ba}}=2\) \(\). Dấu "=" xảy ra khi a=b
Ta có : \(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
= \(\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\) (1)
Áp dụng BĐT vừa c.m , ta suy ra :
\(\hept{\begin{cases}x^2+\frac{1}{x^2}\ge2\\y^2+\frac{1}{y^2}\ge2\\z^2+\frac{1}{z^2}\ge2\end{cases}}\) . Dấu "=" xảy ra khi x=y=z=1 (2)
Từ (1) và (2) => \(\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\)\(\ge2+1+2=6\)
Dấu "=" xảy ra khi x=y=z=1
Thay vào B , ta được :
B = 2+3+1 =6
1,\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)(đk :\(x\ge\frac{2}{3}\)) (1)
Đặt \(4x+1=a\left(a\ge0\right)\) , \(3x-2=b\left(b\ge0\right)\)
Có \(a-b=4x+1-3x+2=x+3\)
=> \(\sqrt{a}-\sqrt{b}=\frac{a-b}{5}\)
<=> \(5\left(\sqrt{a}-\sqrt{b}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)
<=> \(5\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}+5\right)=0\)
=> \(\sqrt{a}-\sqrt{b}=0\)(vì \(\sqrt{a}+\sqrt{b}+5\ge5\) do a,b\(\ge0\))
<=> \(\sqrt{a}=\sqrt{b}\) <=>\(4x+1=3x-2\) <=> \(x=-3\)(k tm đk)
Vậy pt (1) vô nghiệm
1,\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\) (1) (đk: \(x\ge\frac{2}{3}\))
Đặt \(4x+1=a\left(a\ge0\right)\) ,\(3x-2=b\left(b\ge0\right)\)
=> \(a-b=4x+1-3x+2=x+3\)
Có \(\sqrt{a}-\sqrt{b}=\frac{a-b}{5}\)
<=> \(5\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)\left(5-\sqrt{a}-\sqrt{b}\right)=0\)
=> \(\left[{}\begin{matrix}\sqrt{a}=\sqrt{b}\\5=\sqrt{a}+\sqrt{b}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}4x+1=3x-2\\25=a+b+2\sqrt{ab}\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=-3\left(ktm\right)\\25=a+b+2\sqrt{ab}\end{matrix}\right.\)
=> 25=4x+1+3x-2+\(2\sqrt{\left(4x+1\right)\left(3x-2\right)}\)
<=> 26-7x=2\(\sqrt{12x^2-5x-2}\)
<=> \(676-364x+49x^2=48x^2-20x-8\)
<=> \(676-364x+49x^2-48x^2+20x+8=0\)
<=> \(x^2-344x+684=0\)
<=> \(x^2-342x-2x+684=0\)
<=> \(x\left(x-342\right)-2\left(x-342\right)=0\)
<=> (x-2)(x-342)=0
=> \(\left[{}\begin{matrix}x=2\left(tm\right)\\x=342\left(ktm\right)\end{matrix}\right.\)
Vậy pt (1) có nghiệm x=2