Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn trục căn thức ở mẫu rồi trừ đi là xong nhé,vì khi trục căn thức thì ở A mẫu chung là 1,ở B mẫu chung là 2.
Ta có: \(4\left(1+\frac{\sqrt{3}}{2}\right)=3+2\sqrt{3}+1=\left(\sqrt{3}+1\right)^2\Rightarrow1+\frac{\sqrt{3}}{2}=\left(\frac{\sqrt{3}+1}{2}\right)^2\)
Tương tự \(1-\frac{\sqrt{3}}{2}=\left(\frac{\sqrt{3}-1}{2}\right)^2\)
\(VT=\frac{\left(\frac{\sqrt{3}+1}{2}\right)^2}{1+\frac{\sqrt{3}+1}{2}}+\frac{\left(\frac{\sqrt{3}-1}{2}\right)^2}{1-\frac{\sqrt{3}-1}{2}}=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{\frac{3+\sqrt{3}}{2}}+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{\frac{3-\sqrt{3}}{2}}\)\(=\frac{\left(\sqrt{3}+1\right)^2}{2.\sqrt{3}\left(\sqrt{3}+1\right)}+\frac{\left(\sqrt{3}-1\right)^2}{2.\sqrt{3}\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+1}{2\sqrt{3}}+\frac{\sqrt{3}-1}{2\sqrt{3}}=\frac{\sqrt{3}+1+\sqrt{3}-1}{2\sqrt{3}}=1=VP\)
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{5-\sqrt{5}}{1-\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}.\)
\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{5}-1\right)}{1-\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}.\)
\(=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}.\)
\(=\left(\left(-\sqrt{7}\right)+\left(-\sqrt{5}\right)\right)\cdot\frac{\sqrt{7}-\sqrt{7}}{1}\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\cdot\frac{\sqrt{7}-\sqrt{5}}{1}\)
\(=\frac{-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{1}\)
\(=\frac{-\left(7-5\right)}{1}=-2\)
a. A có nghĩa khi \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne\\\frac{x+\sqrt{x}}{\sqrt{x}+1}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
A\(=\frac{x-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{x+\sqrt{x}}\)\(=\frac{x-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
b. \(x=7+4\sqrt{3}\Rightarrow\)A = \(\frac{\sqrt{7+4\sqrt{3}}+1}{\sqrt{7+4\sqrt{3}}}=\frac{\sqrt{\left(2+\sqrt{3}\right)^2}+1}{\sqrt{\left(2+\sqrt{3}\right)^2}}=\frac{3+\sqrt{3}}{2+\sqrt{3}}\)
\(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}.\)
\(=\frac{\frac{2+\sqrt{3}}{2}}{1+\sqrt{\frac{2+\sqrt{3}}{2}}}\)\(+\frac{\frac{2-\sqrt{3}}{2}}{1-\sqrt{\frac{2-\sqrt{3}}{2}}}\)
\(=\frac{\frac{4+2\sqrt{3}}{4}}{1+\sqrt{\frac{4+\sqrt{3}}{4}}}\)\(+\frac{\frac{4-2\sqrt{3}}{4}}{1-\sqrt{\frac{4-2\sqrt{3}}{4}}}\)
\(=\frac{\frac{3+2\sqrt{3}+1}{4}}{1+\sqrt{\frac{3+2\sqrt{3}+1}{4}}}\)\(+\frac{\frac{3-2\sqrt{3}+1}{4}}{1-\sqrt{\frac{3-2\sqrt{3}+1}{4}}}\)
\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{1+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{1+\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}}\)
\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{1+\frac{\sqrt{3}+1}{2}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{1-\frac{\sqrt{3}-1}{2}}\)
\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{\frac{2+\sqrt{3}}{2}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{\frac{2-\sqrt{3}}{2}}\)
\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{\frac{\left(\sqrt{3}+1\right)^2}{4}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{\frac{\left(\sqrt{3}-1\right)^2}{4}}\)
\(=1+1=2\)
\(A=\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}\)
\(A=\frac{2\left(1+\frac{\sqrt{3}}{2}\right)}{2+\sqrt{4+2\sqrt{3}}}+\frac{2\left(1-\frac{\sqrt{3}}{2}\right)}{2-\sqrt{4-2\sqrt{3}}}\)
\(A=\frac{2+\sqrt{3}}{2+\sqrt{3}+1}+\frac{2-\sqrt{3}}{2-\sqrt{3}+1}\)
\(A=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(A=\frac{\left(3-\sqrt{3}\right)\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6}\)
\(A=\frac{3+\sqrt{3}+3-\sqrt{3}}{6}\)
\(A=\frac{6}{6}=1\)