Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 : Tính :
A = \(\frac{1}{2016.2015}+\frac{1}{2015.2014}+\frac{1}{2014.2013}+....+\frac{1}{1.2}\)
\(A=\frac{1}{2016.2015}+\frac{1}{2015.2014}+\frac{1}{2014.2013}+...+\frac{1}{1.2}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}=\frac{2015}{2016}\)
Vậy \(A=\frac{2015}{2016}\).
Mình viết ngược lại cho dễ làm xD
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}+\frac{1}{2015\cdot2016}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(A=\frac{1}{1}-\frac{1}{2016}\)
\(A=\frac{2015}{2016}\)
Sai thì bỏ quá :3
b: \(=\dfrac{1}{2}-\left(\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{2016}=\dfrac{1}{2016}\)
\(\frac{1}{2}-\frac{1}{2016.2015}-\frac{1}{2015.2014}-...-\frac{1}{3.2}\)
\(=\frac{1}{2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2016}\)
\(=\frac{1}{2016}\)
\(\frac{1}{2}-\frac{1}{2016.2015}-\frac{1}{2015.2014}-...-\frac{1}{3.2}\)
\(=\frac{1}{2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2016}\)
\(=0+\frac{1}{2016}=\frac{1}{2016}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2013.2014}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2013}+\frac{1}{2014}-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2014}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2013}+\frac{1}{2014}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1007}\right)\)
\(=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\)
Lại có B = \(\frac{1}{1008.2014}+\frac{1}{1009.2013}+\frac{1}{1010.2012}+...+\frac{1}{2014.1008}\)
=> 3022B = \(\frac{3022}{1008.2014}+\frac{3022}{1009.2013}+\frac{3022}{1010.2012}+...+\frac{3022}{2014.1008}\)
\(=\frac{1}{1008}+\frac{1}{2014}+\frac{1}{1009}+\frac{1}{2013}+\frac{1}{1010}+\frac{1}{2012}+...+\frac{1}{2014}+\frac{1}{1008}\)
\(=2.\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
=> \(B=\frac{1}{1511}.\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
Khi đó \(\frac{A}{B}=\frac{\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)}{\frac{1}{1511}.\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)}=\frac{1}{\frac{1}{1511}}=1511\)
=> \(\frac{A}{B}=1511\)
=> A/B là 1 số nguyên (đpcm)
A= 1/1-1/2+1/2-1/3+1/4-1/5+...+1/101-1/102
A=1-1/102=102/102-1/102=101/102
ý b thì chờ mình tí tìm cách lập luận đã nhé
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}+\frac{1}{101.102}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{102}\)
\(A=1-\frac{1}{102}\)
\(A=\frac{101}{102}\)
bai nay ban viet nguoc day so lai roi giai nhu binh thuong la duoc