Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{6.8}+\frac{3}{8.10}+.......+\frac{3}{198.200}\)
\(=\frac{3}{2}.\left(\frac{2}{6.8}+\frac{2}{8.10}+........+\frac{2}{198.200}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+........+\frac{1}{198}-\frac{1}{200}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{6}-\frac{1}{200}\right)\)
\(=\frac{3}{2}.\frac{97}{600}=\frac{97}{400}\)
\(3.\left(\frac{2}{6.8}+\frac{2}{8.10}+....+\frac{2}{198.200}\right).\frac{1}{2}\)
=\(3.\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+...+\frac{198}{200}\right).\frac{1}{2}\)
=\(3.\left(\frac{1}{6}-\frac{1}{200}\right).\frac{1}{2}\)
=.\(3.\frac{97}{600}.\frac{1}{2}\)=97/400
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(=\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=\)\(1-\frac{1}{2014}\)
\(=\)\(\frac{2014}{2014}-\frac{1}{2014}\)
\(=\)\(\frac{2013}{2014}\)
Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}=\frac{2013}{2014}\)
Dấu \(.\) là dấu nhân nhé
Chúc bạn học tốt ~
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2013\times2014}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=1-\frac{1}{2014}\)
\(=\frac{2013}{2014}\)
CHÚC BN HỌC TỐT!!!!!
=>3/6+4/6<x<16/4-5/4 K NHA MOI NGUOI
=>7/6<x<11/4
=>28/24<x<66/24
=>x=48/24=2
Ta có:
A = [15 x (1-1/7-1/12-1/98)] / [ 18 x (1-1/7-1/12-1/98)]
= 15/18 = 5/6
\(A=\frac{15\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}{18\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}=\frac{15}{18}=\frac{15:3}{18:3}=\frac{5}{6}\)
k cho mk nha
a) \(\frac{16}{35}+\frac{8}{35}=\frac{24}{35}\)
b)\(\frac{160}{77}-\frac{28}{77}=\frac{132}{77}=\frac{12}{1}=12\)
c)\(\frac{72}{180}=\frac{18}{45}\)
d) \(\frac{90}{360}=\frac{1}{4}\)
Ta có: \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2.\left(1-\frac{1}{20}\right)=\frac{2.19}{20}=\frac{19}{10}\)
\(\frac{2}{1\times2}+\frac{2}{2\times3}+......+\frac{2}{19\times20}\)
\(=2\left(\frac{1}{1\times2}+\frac{1}{2\times3}+.......+\frac{1}{19\times20}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\left(1-\frac{1}{20}\right)=2.\frac{19}{20}=\frac{19}{10}\)
\(\frac{1000}{3000}-\frac{200}{6000}=\frac{1}{3}-\frac{1}{30}=\frac{10}{30}-\frac{1}{30}=\frac{9}{30}=\frac{1}{10}\)
\(\frac{3}{10}\)