Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thôi mà, góc B và góc E cùng nhìn chung 1 cung là cung AD => góc B = góc E. Mà góc ABD = 90 độ => góc AED cũng = 90 độ
a: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABEC là hình chữ nhật
Suy ra: CD⊥AC
b: Xét ΔCAE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAE cân tại C
c: Ta có: ΔCAE cân tại C
nên CA=CE
mà CA=BD
nên BD=CE
d: Xét ΔMAE có
MH là đường cao
MH là đường trung tuyến
Do đó: ΔMAE cân tại M
Xét ΔDEA có
EM là đường trung tuyến
EM=DA/2
Do đó: ΔDEA vuông tại E
hay AE⊥ED
Bài 2:
a: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó:ABEC là hình bình hành
Suy ra: AC=BE và AC//BE
b: Xét tứ giác AIEK có
AI//KE
AI=KE
Do đó: AIEK là hình bình hành
Suy ra: Hai đường chéo AE và IK cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của AE
nên M là trung điểm của IK
hay I,M,K thẳng hàng
câu a:
xét tứ giác AEHF, ta có
góc A=90(tam giác ABC vuông tại A)
Góc E=90(E là hinh chiếu của H trên AB nên EH vuông góc với AB tại E)
Góc F=90( F là hình chiếu của H trên AC nên HF vuông góc với AC tại F)
TỪ đó suy ra tứ giác AEHF là hình chữ nhật (tứ giác có 3 góc vuông là HCN)
Câu b:
Xét tam giác ABC vuông tại A ,ta có:
AM=1/2 *BC( định ý đường trung tuyến trong tam giác vuông)
mà AM=2,5cm (gt)
suy ra BC=cm
Vì tam giác ABC vuông tại A(gt)
nên BC^2=AM^2 + AB^2(định lý pytago)
suy ra AC=4cm
xét tam giác ABC ta có:
S(ABC)=1/2(AB*AC)=1/2(3*4)=6cm vuông
A B C H D
Xét \(\Delta AHB\) và \(\Delta DHB\):
-AH=DH (giả thiết)
- Góc AHB = góc DHB = 90 o
-Chung cạnh HB
\(\Rightarrow\Delta AHB=\Delta DHB\)(c.g.c)
\(\Rightarrow\)Góc ABH = góc DBH ( 2 góc tương ứng)
Do đó BH hay BC là phân giác của góc ABD
Xét \(\Delta AHC\) và \(\Delta DHC\):
- AH= DH ( giả thiết)
- Góc AHC = góc DHC = 90 o
-Chung cạnh HC
\(\Rightarrow\Delta AHC=\Delta DHC\)(c.g.c)
\(\Rightarrow\) Góc ACH = góc DCH ( 2 góc tương ứng)
Do đó CH hay CB là tia phân giác của góc ACD.
+ Xét tứ giác ABDC có:
MA=MD và MB=MC => tứ giác ABDC là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành)
Mà ta lại có ^BAC=90
=> Hình bình hành ABDC là hình chữ nhật
+ Kéo dài BA về phía A cắt EI tại F. Xét tứ giác ACIF có AF cuông góc với AC
CI vuông góc với AC (do ABDC là hình chữ nhật)
=> AF//CI. mà IF//AC => ACIF là hình bình hành (tứ giác có các cặp cạnh đối // từng đôi một)
Mà CI vuông góc AC => ACIF là hình chữ nhật
=> AF=CI mà CI=AC => AF=AC (1)
+ Xét tam giác vuông ABC ta có MA=MB=MC (trong tam giác vuông trung tuyến thuộc cạnh huyền thì bằng 1/2 cạnh huyền) => tam giác MAC cân tại M => ^ACB=^MAC
Mà ^ACB=^BAH (cùng phụ với ^ABC)
=>^MAC=BAH mà ^BAH=^EAF (đối đỉnh) => ^EAF=^MAC (2)
+ Xét hai tam giác vuông AEF và tam giác vuông ADC có
^AFE=^ACD=90 (3)
Từ (1) (2) và (3) => tam giác AEF=tam giác ADC (g.c.g)
=> AE=AD
Mà AD=BC (đường chéo của hình chữ nhật ABDC)
=> AE=BC (dpcm)
P/s : Hình bạn tự vẽ giúp mình nha. Cảm ơn bạn nhiều.
a) Xét 🔺ABM và 🔺DCM có :
AM = MD ( gt )
^AMB = ^DMC ( 2 góc đối đỉnh )
MB = MC ( M là trung điểm của cạnh BC )
=> 🔺ABM = 🔺DCM ( c.g.c )
b) Vì 🔺ABM = 🔺DCM ( cmt )
=> ^BAM = ^CDM ( 2 góc tương ứng ) (1)
và AB = CD ( 2 cạnh tương ứng )
Ta có AB < AC ( gt )
mà AB = CD ( cmt )
=> CD < AC
Xét 🔺ACD có CD < AC ( cmt )
=> ^CAM < ^CDM ( Quan hệ giữa góc và cạnh trong một tam giác ) (2)
Từ (1) và (2) => ^CAM < ^BAM
hay ^BAM > ^CAM ( điều phải chứng minh )