K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2023

\(\dfrac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}\)

\(=\dfrac{\sqrt{5}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{4}\left(\sqrt{2}-\sqrt{3}\right)}\)

\(=\dfrac{\sqrt{5}}{\sqrt{4}}\)

\(=\dfrac{\sqrt{5}}{2}\)

14 tháng 8 2023

\(\dfrac{\sqrt{6}-\sqrt{15}}{\sqrt{35}-\sqrt{14}}\)

\(=\dfrac{\sqrt{3}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}\)

\(=-\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}\)

\(=-\dfrac{\sqrt{3}}{\sqrt{7}}\)

\(=-\dfrac{\sqrt{21}}{7}\)

____________

\(\dfrac{5+\sqrt{5}}{\sqrt{10}+\sqrt{2}}\)

\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{2}\left(\sqrt{5}+1\right)}\)

\(=\dfrac{\sqrt{5}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{10}}{2}\)

27 tháng 7 2017

a) \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\dfrac{\left(\sqrt{15}-\sqrt{6}\right)\left(\sqrt{35}+\sqrt{14}\right)}{21}\)

\(=\dfrac{\sqrt{525}+\sqrt{210}-\sqrt{210}-\sqrt{84}}{21}=\dfrac{5\sqrt{21}-2\sqrt{21}}{21}\)

\(=\dfrac{3\sqrt{21}}{21}=\dfrac{\sqrt{21}}{7}\)

b) \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}=\dfrac{\sqrt{10}+\sqrt{15}}{2\sqrt{2}+2\sqrt{3}}\)

\(=\dfrac{\left(\sqrt{10}+\sqrt{15}\right)\left(2\sqrt{2}-2\sqrt{3}\right)}{-4}=\dfrac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{-2}\)

\(=\dfrac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{-2}=\dfrac{\sqrt{20}-\sqrt{30}+\sqrt{30}-\sqrt{45}}{-2}\)

\(=\dfrac{2\sqrt{5}-3\sqrt{5}}{-2}=\dfrac{-\sqrt{5}}{-2}=\dfrac{\sqrt{5}}{2}\)

c) \(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\) có sai k nhỉ

d) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) (tự làm đc kq là \(1+\sqrt{2}\))

e,f) xem lại đề

29 tháng 7 2017

tất cả câu hỏi đều đúng bạn ạ

a: \(=\left(-\sqrt{5}-\sqrt{7}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

=-2

b: \(=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}\)

c: \(=\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-2-\sqrt{10}+3\sqrt{7}+2\)

\(=\sqrt{10}-\sqrt{10}+3\sqrt{7}=3\sqrt{7}\)

21 tháng 9 2018

Mysterious Person giúp e với! Em cảm ơn!!!

a: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)

b: \(=2\sqrt{5}-2-2\sqrt{5}=-2\)

c: \(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

d: \(=\dfrac{2\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{1}{\sqrt{6}}\)

\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{3\sqrt{6}}{6}=-\dfrac{\sqrt{6}}{2}\)

e: \(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)

1: \(=\sqrt{6}+\sqrt{6}+1=2\sqrt{6}+1\)

2: \(=\dfrac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\dfrac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)

3: \(=\sqrt{3}+1-\sqrt{3}=1\)

 

10 tháng 7 2017

bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không

20 tháng 6 2017

a, \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\dfrac{\sqrt{3}.\sqrt{5}-\sqrt{3}.\sqrt{2}}{\sqrt{5}.\sqrt{7}-\sqrt{7}.\sqrt{2}}\)

\(=\dfrac{\sqrt{3}.\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}.\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{3}}{\sqrt{7}}\)

b, \(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)

\(=\dfrac{2.\sqrt{5}.\sqrt{3}-2.\sqrt{2}.\sqrt{5}-\sqrt{3}.\sqrt{3}+\sqrt{2}.\sqrt{3}}{2.\sqrt{5}-2.\sqrt{2}.\sqrt{5}-\sqrt{3}+\sqrt{2}.\sqrt{3}}\)

\(=\dfrac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}.\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}.\left(1-\sqrt{2}\right)-\sqrt{3}.\left(1-\sqrt{2}\right)}\)

\(=\dfrac{\left(2\sqrt{5}+\sqrt{3}\right).\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right).\left(1-\sqrt{2}\right)}=\dfrac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)

c, \(\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}=\dfrac{\sqrt{x}.\sqrt{x}+\sqrt{x}.\sqrt{y}}{\sqrt{y}.\sqrt{y}+\sqrt{x}.\sqrt{y}}\)

\(=\dfrac{\sqrt{x}.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}.\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}}{\sqrt{y}}\)

Chúc bạn học tốt!!!

20 tháng 6 2017

d) \(\dfrac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\) = \(-\dfrac{\sqrt{a}\left(1+\sqrt{ab}\right)-\sqrt{b}\left(1+\sqrt{ab}\right)}{1-ab}\)

= \(-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(1+\sqrt{ab}\right)}{\left(1+\sqrt{ab}\right)\left(1-\sqrt{ab}\right)}\) = \(-\dfrac{\sqrt{a}-\sqrt{b}}{1-\sqrt{ab}}\) = \(\dfrac{\sqrt{b}-\sqrt{a}}{1-\sqrt{ab}}\)

21 tháng 6 2017

a, Dễ thấy C>0.

Ta có: \(C^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}=8+2\sqrt{16-10-2\sqrt{5}}=8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\left(\sqrt{5}-1\right)=8+2\sqrt{5}-2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)

=>\(C=\sqrt{\left(\sqrt{5}+1\right)^2}=\left|\sqrt{5}+1\right|=\sqrt{5}+1\)(vì C>0).