Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4^2.25^2+32.125}{2^3.5^2}=\dfrac{2^4.5^4+2^5.5^3}{2^3.5^2}=\dfrac{2^3.5^2\left(2.5^2+2^2.5\right)}{2^3.5^2}\)
\(=2.5^2+2^2.5=2.25+4.5=50+20=70\)
\(A=\dfrac{4^2.25^2+32.125}{2^3.5^2}=\dfrac{2^4.5^4+2^5.5^3}{2^3.5^2}\)
\(=\dfrac{2^4.5^3\left(5+2\right)}{2^3.5^2}=10.7=70\)
\(B=\dfrac{4^6.9^5+6^4.120}{8^4.3^{12}-6^{11}}=\dfrac{2^{12}.3^{10}+2^4.3^4.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^7.3^5.5}{2^{11}.3^{11}\left(2.3-1\right)}=\dfrac{2^7.3^5\left(2^5.3^5+5\right)}{2^{11}.3^{11}\left(2.3-1\right)}\)
\(=\dfrac{2^5.3^5+5}{2^4.3^6.5}=\dfrac{2}{3.5}+\dfrac{5}{2^4.3^6.5}=\dfrac{2}{15}+\dfrac{1}{11664}\)
\(=\dfrac{7781}{58320}\)
Chúc bạn học tốt!!!
Làm
\(\frac{4^2.25^2+32.125}{2^3.5^2}=\frac{2^4.5^4+2^5.5^3}{2^3.5^2}=\frac{2^4.5^3\left(5+2\right)}{2^3.5^2}=2.5.7=70\)
\(B=\frac{4^2.25^2+32.125}{2^3.5^2}=\frac{2^4.5^4+2^5.5^3}{2^3.5^2}\)
\(=\frac{2^4.5^3\left(5+2\right)}{2^3.5^2}=\frac{2^3.5^2.2.5.7}{2^3.5^2}=2.5.7=70\)
\(\dfrac{4^2.25^2+32.125}{2^3.5^2}=\dfrac{2^4.5^4+2^5.5^3}{2^3.5^2}=\dfrac{2^3.5^2\left(2.5^2+2^2.5\right)}{2^3.5^2}=2.5^2+2^2.5=50+20=70\)
a, (5-5)-1 . \(\left(\dfrac{1}{2}\right)^{-2}\) . \(\dfrac{1}{10^5}\)
= 55 . \(\dfrac{1^{-2}}{2^{-2}}\) . \(\dfrac{1}{10^5}\)
= (55 . \(\dfrac{1}{10^5}\)) . \(\dfrac{1}{4}\)
= \(\dfrac{5^5}{10^5}\) . \(\dfrac{1}{4}\) = \(\left(\dfrac{1}{2}\right)^5\). \(\dfrac{1}{4}\)
= \(\dfrac{1}{32}.\text{}\dfrac{1}{4}\)= \(\dfrac{1}{128}\)
b: \(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\left(2\cdot3-1\right)}=\dfrac{4}{5}\)
c: \(=\dfrac{2^4\cdot5^4+2^5\cdot5^3}{2^3\cdot5^2}=\dfrac{2^4\cdot5^3\left(5+2\right)}{2^3\cdot5^2}=10\cdot7=70\)
=\(\dfrac{\left(2^2\right)^2.\left(5^2\right)^2+2^5.5^2}{2^3.5^2}\)
=\(\dfrac{2^4.5^4+2^5.5^2}{2^3.5^2}\)
=\(\dfrac{2^3.\left(2.5^4+2^2.5^2\right)}{2^3.5^2}\)
=\(\dfrac{5^2.\left(2.5^2+2^2\right)}{5^2}\)
=\(2.5^2+2^2=54\)