Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)
\(\dfrac{1}{7}A=\dfrac{1}{7}\left(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\right)\)
\(=\dfrac{5}{2.7}+\dfrac{4}{7.11}+\dfrac{3}{11.14}+\dfrac{1}{14.15}+\dfrac{13}{15.28}\)
\(=\dfrac{7-2}{2.7}+\dfrac{11-7}{7.11}+\dfrac{14-11}{11.14}+\dfrac{15-14}{14.15}+\dfrac{28-15}{15.28}\)
\(=\dfrac{7}{2.7}-\dfrac{2}{2.7}+\dfrac{11}{7.11}-\dfrac{7}{7.11}+\dfrac{14}{11.14}-\dfrac{11}{11.14}+\dfrac{15}{14.15}-\dfrac{14}{14.15}+\dfrac{28}{15.28}-\dfrac{15}{15.28}\)
\(=\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{28}\)
\(=\dfrac{1}{2}-\dfrac{1}{28}=\dfrac{14}{28}-\dfrac{1}{28}=\dfrac{13}{28}\)
\(A=\dfrac{13}{28}\div\dfrac{1}{7}=\dfrac{13}{4}\)
Đặt A = \(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)
\(\Rightarrow\dfrac{1}{7}.A=\dfrac{5}{2.7}+\dfrac{4}{7.11}+\dfrac{3}{11.14}+\dfrac{1}{14.15}+\dfrac{13}{15.28}\)
\(\Rightarrow\dfrac{1}{7}.A=\left(\dfrac{1}{2}-\dfrac{1}{7}\right)+\left(\dfrac{1}{7}-\dfrac{1}{11}\right)+\left(\dfrac{1}{11}-\dfrac{1}{14}\right)+\left(\dfrac{1}{14}-\dfrac{1}{15}\right)+\left(\dfrac{1}{15}-\dfrac{1}{28}\right)\)
\(\Rightarrow\dfrac{1}{7}.A=\dfrac{1}{2}-\dfrac{1}{28}=\dfrac{13}{28}\)
\(\Leftrightarrow A=\dfrac{13}{4}\)
Vậy...................
a, \(4\times\left(-\dfrac{1}{2}\right)^3-2\times\left(-\dfrac{1}{2}\right)^2+3\times\left(-\dfrac{1}{2}\right)+1\)
\(=\left(-\dfrac{1}{2}\right)\left[\left(4\times-\dfrac{1}{2}\right)-\left(2\times-\dfrac{1}{2}\right)+3\right]+1\)
\(=\left(-\dfrac{1}{2}\right)\left(-2+1+3\right)+1\)
\(=\left(-\dfrac{1}{2}\right)2+1\)
\(=-1+1\)
\(=0\)
@Trịnh Thị Thảo Nhi
a, 4×(−12)3−2×(−12)2+3×(−12)+14×(−12)3−2×(−12)2+3×(−12)+1
=(−12)[(4×−12)−(2×−12)+3]+1=(−12)[(4×−12)−(2×−12)+3]+1
=(−12)(−2+1+3)+1=(−12)(−2+1+3)+1
=(−12)2+1=(−12)2+1
=−1+1=−1+1
=0=0
1,
x =( -12 . ( -3) ) : 2
x = 18
2,
a, -7/9 . 6/11 + (-2/9) = -14/33 + (-2/9) = -64/99
b, -4/7 : 2 = -4/7 . 1/2 = -2/7
c, 115 - (24 - 5. 3) = 115 - ( 24 - 15) = 115 - 9 = 106
d,= -3/7. (5/9 + 4/9) + 17/7 = -3/7 . 1 +17/7 = -3/7 . 17/7 = -51/49
e, ??? mình cx k biết
2,
\(M=\dfrac{\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{11}}\) =\(\dfrac{3\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\)
\(=\dfrac{3}{4}\)
a) \(6\dfrac{5}{7}-\left(1\dfrac{3}{4}+2\dfrac{5}{7}\right)\)
\(=6\dfrac{5}{7}-1\dfrac{3}{4}-2\dfrac{5}{7}\)
\(=\left(6\dfrac{5}{7}-2\dfrac{5}{7}\right)-1\dfrac{3}{4}\)
\(=4-1\dfrac{3}{4}\)
\(=3\dfrac{3}{4}\)
b) \(7\dfrac{5}{11}-\left(2\dfrac{3}{7}+3\dfrac{5}{11}\right)\)
\(=7\dfrac{5}{11}-2\dfrac{3}{7}-3\dfrac{5}{11}\)
\(=\left(7\dfrac{5}{11}-3\dfrac{5}{11}\right)-2\dfrac{3}{7}\)
\(=4-2\dfrac{3}{7}\)
\(=2\dfrac{3}{7}\)
Bạn viết đề bài vào , mình ko biết đề bài ( mình giải luôn )
= \(\dfrac{\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}}{2\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}\right)}\)\(-\dfrac{4\left(\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{3\left(\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{11}+\dfrac{2}{11}\right)}\)
= \(\dfrac{1}{2}-\dfrac{4}{3+\dfrac{2}{11}}\)
Bạn tự tính tiếp nha
a: \(=\dfrac{4\cdot2+4\cdot9}{55}+\dfrac{5}{6}=\dfrac{4}{5}+\dfrac{5}{6}=\dfrac{49}{30}\)
b: \(=\dfrac{3}{2}\cdot\dfrac{3}{5}-\left(\dfrac{3}{7}+\dfrac{3}{20}\right)\cdot\dfrac{10}{3}\)
\(=\dfrac{9}{10}-\dfrac{81}{140}\cdot\dfrac{10}{3}\)
\(=\dfrac{9}{10}-\dfrac{27}{14}=\dfrac{-36}{35}\)
c: \(=15+\dfrac{3}{13}-3-\dfrac{4}{7}-8-\dfrac{3}{13}\)
\(=4-\dfrac{4}{7}=\dfrac{24}{7}\)
d: \(=\dfrac{-7}{9}\left(\dfrac{4}{11}+\dfrac{7}{11}\right)+5+\dfrac{7}{9}=5\)
A = \(\dfrac{3}{3\times7}\)+ \(\dfrac{3}{7\times11}\)+ \(\dfrac{3}{11\times15}\)+...+\(\dfrac{3}{107\times111}\)
A = \(\dfrac{3}{4}\) \(\times\)( \(\dfrac{4}{3\times7}\)+ \(\dfrac{4}{7\times11}\)+ \(\dfrac{4}{11\times15}\)+...+\(\dfrac{4}{107\times111}\))
A = \(\dfrac{3}{4}\) \(\times\) ( \(\dfrac{1}{3}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\)+ \(\dfrac{1}{11}\) - \(\dfrac{1}{15}\)+...+ \(\dfrac{1}{107}\)- \(\dfrac{1}{111}\))
A = \(\dfrac{3}{4}\) \(\times\) ( \(\dfrac{1}{3}\) - \(\dfrac{1}{111}\))
A = \(\dfrac{9}{37}\) > \(\dfrac{9}{45}\) = \(\dfrac{1}{5}\)
Vậy \(\dfrac{3}{3\times7}\) + \(\dfrac{3}{7\times11}\)+ \(\dfrac{3}{11\times15}\) + ...+ \(\dfrac{3}{107\times111}\) > \(\dfrac{1}{5}\) ( đpcm)
Bạn ơi thế này thì đúng hơn chứ:
\(\dfrac{3}{3.7}+\dfrac{3}{7.11}+\dfrac{3}{11.15}+...+\dfrac{3}{107.111}>\dfrac{1}{5}\)