Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm rõ \(\sum_{cyc}\frac{a}{a+b}-\frac{3}{2}=\sum_{cyc}\left(\frac{a}{a+b}-\frac{1}{2}\right)=\sum_{cyc}\frac{a-b}{2(a+b)}\)
\(=\sum_{cyc}\frac{(a-b)(c^2+ab+ac+bc)}{2\prod\limits_{cyc}(a+b)}=\sum_{cyc}\frac{c^2a-c^2b}{2\prod\limits_{cyc}(a+b)}\)
\(=\sum_{cyc}\frac{a^2b-a^2c}{2\prod\limits_{cyc}(a+b)}=\frac{(a-b)(a-c)(b-c)}{2\prod\limits_{cyc}(a+b)}\geq0\) (đúng)
ok thỏa thuận rồi tui làm nửa sau thui nhé :D
Đặt \(a^2=x;b^2=y;c^2=z\) thì ta có:
\(VT=\sqrt{\dfrac{x}{x+y}}+\sqrt{\dfrac{y}{y+z}}+\sqrt{\dfrac{z}{x+z}}\)
Lại có: \(\sqrt{\dfrac{x}{x+y}}=\sqrt{\dfrac{x}{\left(x+y\right)\left(x+z\right)}\cdot\sqrt{x+z}}\)
Tương tự cộng theo vế rồi áp dụng BĐT C-S ta có:
\(VT^2\le2\left(x+y+z\right)\left[\dfrac{x}{\left(x+y\right)\left(x+z\right)}+\dfrac{y}{\left(y+z\right)\left(y+x\right)}+\dfrac{z}{\left(z+x\right)\left(z+y\right)}\right]\)
\(\Leftrightarrow VT^2\le\dfrac{4\left(x+y+z\right)\left(xy+yz+xz\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)
Vì \(VP^2=\dfrac{9}{2}\) nên cần cm \(VT\le \frac{9}{2}\)
\(\Leftrightarrow9\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left(x+y+z\right)\left(xy+yz+xz\right)\)
Can you continue
BĐT cần chứng minh tương đương :
\(\sqrt{\dfrac{a^2+b^2}{2}}-\sqrt{ab}\ge\dfrac{a+b}{2}-\dfrac{2ab}{a+b}\)
\(\Leftrightarrow\dfrac{\dfrac{a^2+b^2}{2}-ab}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}\ge\dfrac{\left(a+b\right)^2-4ab}{2\left(a+b\right)}\)
\(\Leftrightarrow\dfrac{\dfrac{\left(a-b\right)^2}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}\ge\dfrac{\left(a-b\right)^2}{2\left(a+b\right)}\)
\(\Leftrightarrow\dfrac{\dfrac{\left(a-b\right)^2}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}-\dfrac{\left(a-b\right)^2}{2\left(a+b\right)}\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}-\dfrac{1}{2\left(a+b\right)}\right)\ge0\)
ta phải chứng minh;
\(\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}-\dfrac{1}{2\left(a+b\right)}\ge0\)
\(\Leftrightarrow\)\(\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}\ge\dfrac{1}{2\left(a+b\right)}\)
\(\Leftrightarrow a+b\ge\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}\)\(\Leftrightarrow2a+2b-\sqrt{2\left(a^2+b^2\right)}-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(a+b-\sqrt{2\left(a^2+b^2\right)}\right)+\left(a+b-2\sqrt{ab}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2-2\left(a^2+b^2\right)}{a+b+\sqrt{2\left(a^2+b^2\right)}}+\dfrac{\left(a+b\right)^2-4ab}{a+b+2\sqrt{ab}}\ge0\)
\(\Leftrightarrow\dfrac{-\left(a-b\right)^2}{a+b+\sqrt{2\left(a^2+b^2\right)}}+\dfrac{\left(a-b\right)^2}{a+b+2\sqrt{ab}}\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(\dfrac{1}{a+b+2\sqrt{ab}}-\dfrac{1}{a+b+\sqrt{2\left(a^2+b^2\right)}}\right)\ge0\)
ta phải chứng minh
\(\Leftrightarrow\dfrac{1}{a+b+2\sqrt{ab}}-\dfrac{1}{a+b+\sqrt{2\left(a^2+b^2\right)}}\ge0\)
\(\Leftrightarrow\dfrac{1}{a+b+2\sqrt{ab}}\ge\dfrac{1}{a+b+\sqrt{2\left(a^2+b^2\right)}}\)
\(\Leftrightarrow a+b+2\sqrt{ab}\le a+b+\sqrt{2\left(a^2+b^2\right)}\)
\(\Leftrightarrow2\sqrt{ab}\le\sqrt{2\left(a^2+b^2\right)}\Leftrightarrow\left(a-b\right)^2\ge0\)
b) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}\)
\(=\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{a+\sqrt{ab}-\sqrt{ab}+b-\sqrt{ab}+b-2b}{a-b}\)
\(=\dfrac{a}{a-b}\)
\(A=\dfrac{7\sqrt{a}}{a-9}-\left(\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{\sqrt{a}-1}{\sqrt{a}+3}\right)=\dfrac{7\sqrt{a}}{a-9}-\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}=\dfrac{7\sqrt{a}}{a-9}-\dfrac{a+3\sqrt{a}-a+3\sqrt{a}+\sqrt{a}-3}{a-9}=\dfrac{3}{a-9}\)\(B=\left(\dfrac{1}{\sqrt{a}-3}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-3}\right)=\dfrac{\sqrt{a}-\sqrt{a}+3}{\sqrt{a}\left(\sqrt{a}-3\right)}:\dfrac{a-9-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{3}{\sqrt{a}\left(\sqrt{a}-3\right)}.\dfrac{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}{-5}=\dfrac{3\sqrt{a}-6}{-5\sqrt{a}}\)
\(C=\left(\dfrac{a\sqrt{a}}{\sqrt{a}-1}-\dfrac{a^2}{a\sqrt{a}-a}\right).\left(\dfrac{1}{a}-2\right)=\left(\dfrac{a\sqrt{a}}{\sqrt{a}-1}-\dfrac{a^2}{a\left(\sqrt{a}-1\right)}\right).\dfrac{1-2a}{a}=\dfrac{a\sqrt{a}-a}{\sqrt{a}-1}.\dfrac{1-2a}{a}=\dfrac{a\left(\sqrt{a}-1\right)}{\sqrt{a}-1}.\dfrac{1-2a}{a}=1-2a\)\(D=\dfrac{a\sqrt{a}+1}{a-1}-\dfrac{a-1}{\sqrt{a}+1}=\dfrac{a\sqrt{a}+1-\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1}=\dfrac{a\sqrt{a}+1-a\sqrt{a}+a+\sqrt{a}-1}{a-1}=\dfrac{a+\sqrt{a}}{a-1}=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}}{\sqrt{a}-1}\)
\(1.\) Gỉa sử : \(\sqrt{25-16}< \sqrt{25}-\sqrt{16}\)
\(\Leftrightarrow3< 1\) ( Vô lý )
\(\Rightarrow\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)
\(2.\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< a-b\)
\(\Leftrightarrow a-2\sqrt{ab}+b< a-b\)
\(\Leftrightarrow2b-2\sqrt{ab}< 0\)
\(\Leftrightarrow2\left(b-\sqrt{ab}\right)< 0\)
Ta có :\(a>b\Leftrightarrow ab>b^2\Leftrightarrow\sqrt{ab}>b\)
\(\RightarrowĐpcm.\)
\(2a.\) Áp dụng BĐT Cauchy , ta có :
\(a+b\ge2\sqrt{ab}\left(a;b\ge0\right)\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(b.\) Áp dụng BĐT Cauchy cho các số dương , ta có :
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\left(x,y>0\right)\left(1\right)\)
\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\left(y,z>0\right)\left(2\right)\)
\(\dfrac{1}{x}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{xz}}\left(x,z>0\right)\left(3\right)\)
Cộng từng vế của ( 1 ; 2 ; 3 ) , ta được :
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)
\(3a.\sqrt{x-4}=a\left(a\in R\right)\left(x\ge4;a\ge0\right)\)
\(\Leftrightarrow x-4=a^2\)
\(\Leftrightarrow x=a^2+4\left(TM\right)\)
\(3b.\sqrt{x+4}=x+2\left(x\ge-2\right)\)
\(\Leftrightarrow x+4=x^2+4x+4\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)
KL....
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
Thay \(a=b=c=0,25\)thì ta có:
\(\dfrac{1}{\sqrt{0,25}}+\dfrac{1}{\sqrt{0,25}}+\dfrac{2\sqrt{2}}{\sqrt{0,25}}\approx9,657\)
\(\dfrac{8}{0,25+0,25+0,25}\approx10,667\)
Vậy đề sai