Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a, Đặt \(A=\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
\(\Rightarrow A=\dfrac{-1}{4.5}+\dfrac{-1}{5.6}+\dfrac{-1}{6.7}+...+\dfrac{-1}{9.10}\)
\(\Rightarrow A=\dfrac{-1}{4}+\dfrac{1}{5}-\dfrac{1}{5}+...-\dfrac{1}{9}+\dfrac{1}{10}\)
\(\Rightarrow A=\dfrac{-1}{4}+\dfrac{1}{10}\)
\(\Rightarrow A=\dfrac{-3}{20}\)
\(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{9.10}\\ =\dfrac{-1}{4.5}+\dfrac{-1}{5.6}+\dfrac{-1}{6.7}+\dfrac{-1}{7.8}+\dfrac{-1}{8.9}+\dfrac{-1}{9.10}\)
\(=\dfrac{-1}{4}-\dfrac{-1}{5}+\dfrac{-1}{5}-\dfrac{-1}{6}+\dfrac{-1}{6}-\dfrac{-1}{7}+\dfrac{-1}{7}-\dfrac{-1}{8}+\dfrac{-1}{8}-\dfrac{-1}{9}+\dfrac{-1}{9}-\dfrac{-1}{10}\)
\(=\dfrac{-1}{4}-\dfrac{-1}{10}\\=\dfrac{-1}{4}+\dfrac{1}{10}\\=\dfrac{-5}{20}+\dfrac{2}{20}\\=\dfrac{-3}{20}\)
b: \(C=\left(\dfrac{12}{199}+\dfrac{23}{200}-\dfrac{34}{201}\right)\cdot\dfrac{3-2-1}{6}=0\)
Lời giải:
a)
\(A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+....+\frac{-1}{90}\)
\(=\frac{-1}{4.5}+\frac{-1}{5.6}+\frac{-1}{6.7}+...+\frac{-1}{9.10}\)
\(=\frac{4-5}{4.5}+\frac{5-6}{5.6}+\frac{6-7}{6.7}+....+\frac{9-10}{9.10}\)
\(=\frac{1}{5}-\frac{1}{4}+\frac{1}{6}-\frac{1}{5}+\frac{1}{7}-\frac{1}{6}+...+\frac{1}{10}-\frac{1}{9}\)
\(=\frac{1}{10}-\frac{1}{4}=-\frac{3}{20}\)
b)
\(2B=5+\frac{8}{11}+\frac{3}{11}+\frac{1}{15}+\frac{13}{15.2}\)
\(=5+\frac{11-3}{11}+\frac{3}{11}+\frac{1}{15}+\frac{15-2}{15.2}\)
\(=5+1-\frac{3}{11}+\frac{3}{11}+\frac{1}{15}+\frac{1}{2}-\frac{1}{15}\)
\(=5+1+\frac{1}{2}=\frac{13}{2}\Rightarrow B=\frac{13}{4}\)
E=\(\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\\ E=\dfrac{1}{90}-\left(\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{2}\right)\\ E=\dfrac{1}{90}-\left(\dfrac{1}{9.8}+\dfrac{1}{8.7}+\dfrac{1}{7.6}+\dfrac{1}{6.5}+\dfrac{1}{5.4}+\dfrac{1}{4.3}+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\\ E=\dfrac{1}{90}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)\\ E=\dfrac{1}{90}-\left(1-\dfrac{1}{9}\right)\\ E=\dfrac{1}{90}-\dfrac{8}{9}\\ E=\dfrac{1}{90}-\dfrac{80}{90}\\ E=-\dfrac{79}{90}\)Vậy:\(E=-\dfrac{79}{90}\)
E=\(\dfrac{1}{10.9}-\dfrac{1}{9.8}-\dfrac{1}{8.7}-\dfrac{1}{7.6}-\dfrac{1}{6.5}-\dfrac{1}{5.4}-\dfrac{1}{4.3}-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
E=\(\dfrac{1}{10}-\dfrac{1}{1}\)
E=\(\dfrac{-9}{10}\)
B=\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
B=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
B=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
B= 1-\(\dfrac{1}{8}\)
B= \(\dfrac{7}{8}\)
\(A=\dfrac{5}{9}-\dfrac{5}{8}+\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{-3}{8}+\dfrac{1}{3}\\ =\dfrac{5}{9}+\dfrac{-5}{8}+\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{-3}{8}+\dfrac{1}{3}\\= \left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\left(\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(\dfrac{-5}{8}+\dfrac{-3}{8}\right)\\ =1+1+\left(-1\right)\\ =2+\left(-1\right)\\ =1\)
\(A=\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)
\(=\dfrac{1}{5}-\dfrac{1}{12}=\dfrac{12}{60}-\dfrac{5}{60}=\dfrac{7}{60}\)
Vậy \(A=\dfrac{7}{60}\)
\(A=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
\(A=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)
\(A=\dfrac{1}{5}-\dfrac{1}{12}\)
\(A=\dfrac{7}{60}\)
1,A=\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)+...+\(\dfrac{1}{99.100}\)
1,A= \(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-...-\(\dfrac{1}{99}\)+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\)
1,A= \(\dfrac{1}{2}\)-\(\dfrac{1}{100}\)
1,A= \(\dfrac{49}{100}\)
(Còn câu 2 mình chưa nghĩ ra. Cho mình hỏi 1 câu, không biết là đề câu 2 có chính xác không?)
đề này do cô giáo lớp mình cho mình cũng đc chữa câu 1 rồi còn câu 2 thì tiếp tục nghĩ
Đăng ít thôi.
d) \(D=\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+\dfrac{1}{4.5.6}+\dfrac{1}{5.6.7}+\dfrac{1}{6.7.8}+\dfrac{1}{7.8.9}+\dfrac{1}{8.9.10}\)
\(\Rightarrow2D=\dfrac{2}{1.2.3}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}+\dfrac{2}{7.8.9}+\dfrac{2}{8.9.10}\)
\(\Rightarrow2D=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{4.5}-\dfrac{1}{5.6}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)
\(\Rightarrow2D=\dfrac{1}{2.3}-\dfrac{1}{9.10}\)
\(\Rightarrow2D=\dfrac{22}{45}\)
\(\Rightarrow D=\dfrac{11}{45}\)
2) Tinh nhanh:
a) \(\dfrac{5}{23}\) . \(\dfrac{17}{26}\) + \(\dfrac{5}{23}\) . \(\dfrac{10}{26}\) - \(\dfrac{5}{23}\)
= \(\dfrac{5}{23}\) . \(\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)
= \(\dfrac{5}{23}\) . \(\left(\dfrac{27}{26}-1\right)\) = \(\dfrac{5}{23}\) . \(\dfrac{1}{26}\)
= \(\dfrac{5}{598}\)
b) \(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)
= \(\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)
= \(\dfrac{5}{9}\) . 1= \(\dfrac{5}{9}\)
ko qui đồng nha