K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

B M A N C H

Tam giác AHB vuông tại H có HM là trung tuyến

=>  HM = 1/2 AB   => AB = 30 cm

Tam giác AHC vuông tại H có HN là trung tuyến

=>  HN = 1/2 AC  => AC = 40 cm

Áp dụng Pytago ta có:  AB2 + AC2 = BC2

                         =>  BC2 = 302 + 402 = 2500

                         => BC = 50

Áp dụng hệ thức lượng ta có:

AB2 = BH.BC  => \(BH=\frac{AB^2}{BC}=18\)

AC2 = CH.BC  =>  \(CH=\frac{AC^2}{BC}=32\)

HA.BC = AB.AC  =>  \(HA=\frac{AB.AC}{BC}=24\)

20 tháng 8 2017

xem lại sgk và áp dụng công thức nhá!)

8 tháng 9 2020

Vì BC có độ dài lớn nhất nên đề bài tương đương với: \(\sqrt[3]{BD^2}+\sqrt[3]{EC^2}=\sqrt[3]{BC^2}\)(Định lí Pythagoras đảo)

Lập phương 2 vế: \(BD^2+EC^2+3\sqrt[3]{\left(BD.EC\right)^2}\left(\sqrt[3]{BD^2}+\sqrt[3]{EC^2}\right)=BC^2\)

Ôn lại các hệ thức lượng cho tam giác vuông vì sắp tới mình sẽ dùng 1 chuỗi hệ thức đấy:

+Tam giác AHD vuông tại H, đường cao DH: \(AH^2=AD.AB,BH^2=BD.BA\)

+Tam giác AHC vuông tại H, đường cao EH: \(AH^2=AC.AE,CH^2=CA.CE\)

+Tam giác ABC vuông tại A, đường cao AH: \(AH^2=HB.HC,AH.BC=AB.AC,BC^2=AB^2+AC^2\)

$ ADHE là hình chữ nhật nên AD=HE

$ Tam giác AHE vuông tại H nên \(AH^2=AE^2+HE^2\)

Ok, giờ triển thoi: \(BD^2+EC^2+3\sqrt[3]{\left(BD.EC\right)^2}\left(\sqrt[3]{BD^2}+\sqrt[3]{EC^2}\right)=BC^2\)

\(\Leftrightarrow\left(AB-AD\right)^2+\left(AC-AE\right)^2+3\sqrt[3]{\left(BD.CE\right)^2}.\sqrt[3]{BC^2}=BC^2\)

\(\Leftrightarrow\left(AB^2+AC^2\right)+\left(AD^2+AE^2\right)-2\left(AB.AD+AC.AE\right)+3\sqrt[3]{\left(BD.CE.BC\right)^2}=BC^2\)

\(\Leftrightarrow BC^2+\left(AE^2+HE^2\right)-2\left(AH^2+AH^2\right)+3\sqrt[3]{\left(BD.CE.BC\right)^2}=BC^2\)

\(\Leftrightarrow AH^2-4AH^2-3\sqrt[3]{\left(BD.CE.BC\right)^2}=0\)

\(\Leftrightarrow3\sqrt[3]{\left(BD.CE.BC\right)^2}=3AH^2\)

\(\Leftrightarrow BD.CE.BC=AH^3\)

\(\Leftrightarrow BD.CE.BC.AH=AH^4\)

\(\Leftrightarrow\left(BD.BA\right)\left(CE.CA\right)=AH^4\)

\(\Leftrightarrow BH^2.CH^2=AH^4\Leftrightarrow BH.CH=AH^2\)---> Luôn đúng

Vậy giả thiết đúng.

(Bài dài giải mệt vler !!)

13 tháng 6 2016

A B C H E F

a) Áp dụng định lí Pytago đảo, ta được đpcm.

b) Ta có : \(S_{\Delta ABC}=\frac{1}{2}.AH.BC=\frac{1}{2}.AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\left(cm\right)\)

c) HF // AB => Góc CHF = Góc B (đồng vị) ; Góc HFC = Góc BEH = 90 độ

=> \(\Delta HFC~\Delta BEH\left(g.g\right)\)

d)Dễ thấy :  \(\Delta HBA~\Delta ABC\left(g.g\right)\Rightarrow\frac{BH}{AB}=\frac{AB}{BC}\Rightarrow AB^2=BH.BC\)(1)

\(\Delta HCA~\Delta ACB\left(g.g\right)\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=CH.BC\)(2)

Từ (1) và (2) suy ra : \(\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\)