Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{7}{4}.\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)
\(=\dfrac{7}{4}.\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)
\(=\dfrac{7}{4}.33\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)\)
\(=\dfrac{7}{4}.33\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}\right)\)
\(=\dfrac{7}{4}.33\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)
\(=\dfrac{7}{4}.33\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)
\(=\dfrac{7}{4}.33\left(\dfrac{7}{21}-\dfrac{3}{21}\right)\)
\(=\dfrac{7}{4}.33.\dfrac{4}{21}\)
\(=\dfrac{231}{4}.\dfrac{4}{21}\)
\(=\dfrac{231}{21}=11\)
\(b,C=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\\ =\dfrac{1}{3.6}+\dfrac{1}{6.9}+\dfrac{1}{9.12}+...+\dfrac{1}{30.33}\\ =\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+...+\dfrac{1}{30}-\dfrac{1}{33}\\ =\dfrac{1}{3}-\dfrac{1}{33}\\ =\dfrac{11}{33}-\dfrac{1}{33}=\dfrac{10}{33}\)
a.F=\(\dfrac{4}{2.4}\)+\(\dfrac{4}{4.6}\)+\(\dfrac{4}{6.8}\)+...+\(\dfrac{4}{2008.2010}\)
F=\(\dfrac{2.2}{2.4}\)+\(\dfrac{2.2}{4.6}\)+\(\dfrac{2.2}{6.8}\)+...+\(\dfrac{2.2}{2008.2010}\)
F=2.(\(\dfrac{2}{2.4}\)+\(\dfrac{2}{4.6}\)+\(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{2008.2010}\))
F=2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{2008}\)-\(\dfrac{1}{2010}\))
F=2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{2010}\))
F=\(\dfrac{1004}{1005}\)
1, \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...........\left(1-\dfrac{1}{n+1}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right)...........\left(\dfrac{n+1}{n+1}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}..............\dfrac{n}{n+1}\)
\(=\dfrac{1.2.3........n}{2.3.......\left(n+1\right)}\)
\(=\dfrac{1}{n+1}\)
2, \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...........+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+............+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
C=\(-66\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{11}\right)+124.\left(-37\right)+63.\left(-124\right)\)
=\(-66.\left(\dfrac{5}{66}\right)+124\left(-37-63\right)=-5+124.\left(-100\right)\)
=-12405
\(P=-\frac{7}{4}.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
\(P=-\frac{7}{4}.\left(\frac{33}{12}+\frac{33.101}{20.101}+\frac{33x10101}{30x10101}+\frac{33x1010101}{42x1010101}\right)\)
\(P=-\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(P=-\frac{7}{4}.\left(\frac{11}{4}+\frac{33}{20}+\frac{11}{10}+\frac{11}{14}\right)\)
\(P=-\frac{77}{8}.\left(\frac{1}{6}+\frac{3}{10}+\frac{1}{15}+\frac{1}{21}\right)=-\frac{77}{8}.\frac{35+63+14+10}{210}=-\frac{11x122}{8x30}\)
\(P=-\frac{671}{120}\)
P = -7/4 x (33/12 + 3333/2020 + 333333/303030 + 33333333/42424242)
= -7/4 x (33/12 + 33/20 + 33/30 + 33/42)
= -7/4 x [33 x (1/12 + 1/20 + 1/30 + 1/42)]
= -7/4 x [33 x (35/420 + 21/420 + 14/420 + 10/420)]
= -7/4 x (33 x 80/420)
= -7/4 x 33 x 4/21
= -7/4 x 4/21 x 33 (= -7x4 / 4x21 x33)
= -7/21 x 33 (= -7x33 / 21 = -1x7x3x11 / 3x7)
= -11/1
= -11
Đáp số P = -11
Các số gạch đi là do rút gọn phân số nhé!!!
1: \(=\dfrac{-8}{11}\left(\dfrac{3}{2}+\dfrac{33}{20}+\dfrac{11}{10}\right)\)
\(=\dfrac{-8}{11}\cdot\dfrac{30+33+22}{20}=\dfrac{-8}{11}\cdot\dfrac{85}{20}=-\dfrac{34}{11}\)
2: \(=\dfrac{2}{3}+\dfrac{1}{3}=1\)
\(\frac{7}{4}.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
\(=\frac{7}{4}.\left(\frac{33}{12}+\frac{3333\div101}{2020\div101}+\frac{333333\div10101}{303030\div10101}+\frac{33333333\div1010101}{42424242\div1010101}\right)\)
\(=\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{11}{10}+\frac{11}{14}\right)\)
= 7/4 . 44/7
= 11
\(\frac{7}{4}.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
\(=\frac{7}{4}.\left(\frac{33}{3.4}+\frac{33.101}{20.101}+\frac{33.10101}{30.10101}+\frac{33.1010101}{42.1010101}\right)\)
\(=\frac{7}{4}.\left(\frac{33}{3.4}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(=\frac{7}{4}.\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)
\(=\frac{7}{4}.33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(=\frac{7}{4}.33.\frac{4}{21}\)
\(=11\)
Tham khảo nhé~
a) 74x.(3312+33332020+333333303030+3333333342424242)=32\frac{7}{4}x.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)=3247x.(1233+20203333+303030333333+4242424233333333)=32
74x.(3312+3320+3330+3342)=32\frac{7}{4}x.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)=3247x.(1233+2033+3033+4233)=32
74x.(333.4+334.5+335.6+336.7)=32\frac{7}{4}x.\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)=3247x.(3.433+4.533+5.633+6.733)=32
74x.33.(13−14+14−15+15−16+16−17)=32\frac{7}{4}x.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)=3247x.33.(31−41+41−51+51−61+61−71)=32
74x.33.(13−17)=32\frac{7}{4}x.33.\left(\frac{1}{3}-\frac{1}{7}\right)=3247x.33.(31−71)=32
74x.33⋅421=32\frac{7}{4}x.33\cdot\frac{4}{21}=3247x.33⋅214=32
b) 13+16+110+115+...+2x.(x−1)=20072009\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{2}{x.\left(x-1\right)}=\frac{2007}{2009}31+61+101+151+...+x.(x−1)2=20092007
26+212+220+230+...+2(x−1).x=20072009\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{\left(x-1\right).x}=\frac{2007}{2009}62+122+202+302+...+(x−1).x2=20092007
22.3+23.4+24.5+25.6+...+2(x−1).x=20072009\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{\left(x-1\right).x}=\frac{2007}{2009}2.32+3.42+4.52+5.62+...+(x−1).x2=20092007
2.(12−13+13−14+14−15+15−16+...+1x−1−1x)=200720092.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{x-1}-\frac{1}{x}\right)=\frac{2007}{2009}2.(21−31+31−41+41−51+51−61+...+x−11−x1)=20092007
2.(12−1x)=200720092.\left(\frac{1}{2}-\frac{1}{x}\right)=\frac{2007}{2009}2.(21−x1)=20092007
1−2x=200720091-\frac{2}{x}=\frac{2007}{2009}1−x2=20092007
2x=22009\frac{2}{x}=\frac{2}{2009}x2=20092
=> x = 2009
A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)
= \(\left(-2\right).\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{215}{214}\right)\)
= \(\dfrac{\left(-2\right).\left(-3\right).\left(-4\right).\left(-5\right)...\left(-215\right)}{1.2.3.4...214}\)
= \(\dfrac{2.3.4.5...215}{1.2.3.4...214}\)
= \(\dfrac{215}{1}=215\)
B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)....\left(-1\dfrac{1}{299}\right)\)
= \(\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{300}{299}\right)\)
= \(\dfrac{\left(-3\right).\left(-4\right).\left(-5\right)...\left(-300\right)}{2.3.4...299}\)
= \(\dfrac{3.4.5...300}{2.3.4.5...299}\)
= \(\dfrac{300}{2}=150\)
bài 1:
\(\frac{7}{4}\left(\frac{33}{42}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
\(=\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(=\frac{7}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{231}{4}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{231}{4}\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(=\frac{231}{4}\cdot\frac{4}{21}=11\)
\(\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{1931}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
= \(\left[\frac{193}{17}.\frac{2}{193}-\frac{193}{17}.\frac{3}{386}+\frac{33}{34}\right]:\left[\frac{1931}{25}.\frac{7}{1931}+\frac{1931}{25}.\frac{11}{3862}+\frac{9}{2}\right]\)
= \(\left[\frac{2}{17}-\frac{3}{17}+\frac{33}{34}\right]:\left[\frac{7}{25}+\frac{11}{50}+\frac{9}{2}\right]\)
= \(\left[\frac{4}{34}-\frac{6}{34}+\frac{33}{34}\right]:\left[\frac{14}{50}+\frac{11}{50}+\frac{225}{50}\right]\)
= \(\frac{31}{34}:2\)
= \(\frac{31}{68}\)
Cái ở giữa 3333/2020 và 333333/3030303 là j vậy ạ
Đề sai rồi bạn