Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mạch có cộng hưởng điện thì \(w=\frac{1}{\sqrt{LC}}\)
Tần số: \(f_0=\frac{\omega}{2\pi}=\frac{1}{2\pi\sqrt{LC}}\)
Đặt \(Z_L = x, Z_c = y\)
Công suất: \(P = R.I^2 = \frac{RU^2}{R^2 + (x - y)^2} = 210 W\)
Mặt khác: \(f(x) = U_{RC} + U_L = (Z_{RC} + Z_L)I = \frac{U(\sqrt{R^2 + y^2} + x)}{\sqrt{R^2 + x^2 + y^2 - 2xy}}\)
Lấy đạo hàm f(x) và cho \(f'(x) = 0\) suy ra \(x = \sqrt{R^2 + y^2}\)
Khi đó \(f_{max} = 2\sqrt{2}U\) nên suy ra \(y = \frac{3}{4}\sqrt{R^2 + y^2} \Rightarrow y = \frac{3R}{\sqrt{7}}\Rightarrow x = \frac{4R}{\sqrt{7}}\)
\(\Rightarrow \frac{RU^2}{R^2 + (\frac{4R}{\sqrt{7}} - \frac{3R}{\sqrt{7}})^2} = 210 W \Leftrightarrow \frac{7U^2}{8R} = 210 \Rightarrow P_{max} = \frac{U^2}{R} = 240 W\)
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Áp dụng: \(P=\dfrac{U^2}{R}\cos^2\varphi\)
\(\Rightarrow 160=\dfrac{U^2}{R}.0,4^2\) (1)
\(340=\dfrac{U^2}{R}.\cos^2\varphi\) (2)
Lấy (1) chia (2) vế với vế ta tìm đc \(\cos\varphi = 0,6\)
\(P_1=UI.cos\varphi=\frac{U^2.R}{Z.R}.cos\varphi=\frac{U^2}{R}.cos\varphi^2_1\)
\(P_2=UI.cos\varphi=\frac{U^2.R}{Z.R}.cos\varphi=\frac{U^2}{R}.cos\varphi^2_2\)
\(cos\varphi_2=0,6\)
đáp án B
Ta áp dụng: \(P=\dfrac{U^2}{R}.\cos^2\varphi\)
Ta có:
\(P_1=\dfrac{U^2}{R}.\cos^2\varphi_1\)
\(P_2=\dfrac{U^2}{R}.\cos^2\varphi_2\)
\(\Rightarrow \dfrac{P_2}{P_1}=(\dfrac{\cos\varphi_2}{\cos\varphi_1})^2=1,6\)
\(\Rightarrow \dfrac{\cos\varphi_2}{\cos\varphi_1}=1,265\)
Suy ra hệ số công suất tăng 26,5%
Chúc bạn thi tốt
Em phải post mỗi câu hỏi 1 bài thôi nhé, để tiện thảo luận.
1. Điều kiện có sóng dừng trên dây có một đầu cố định một đầu tự do: \(L=(2n+1)\frac{\lambda}{4}=(2n+1)\frac{v}{4f}\) (L là chiều dài dây)
\(\Rightarrow n=\frac{1}{2}(\frac{4fL}{v}-1)\)
Do f từ 80Hz đến 120 Hz nên ta tìm được n thỏa mãn sẽ từ 12 đến 17
Do đó có 6 tần số có thể tạo sóng dừng trên dây.
2. Điều chỉnh C để công suất cực đại --> Cộng hưởng xảy ra ---> \(P=\dfrac{U^2}{R}=600(W)\)
Điều chỉnh C = C2 thì công suất sẽ là: \(P_2=\dfrac{U^2}{R}\cos^2(\varphi)=600.(\dfrac{\sqrt 3}{2})^2=450W\)
Giải thích: Đáp án A
Phương pháp: Chu n hoá số liệu
Cách giải:
+ Ta có:
f
ZL
ZC
cosφ
60Hz
1
a
120Hz
2
a/2
180Hz
3
a/3
30Hz
1/2
2a