Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng t/c dãy tỉ số = nhau ta đc
\(+)\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)(do a+b+c=1)
=> \(x+y+z=\frac{x}{a}\Leftrightarrow\left(x+y+z\right)^2=\frac{x^2}{a^2}\left(1\right)\)
+) \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=>\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)(do a^2 +b^2 +c^2 =1)
\(\Leftrightarrow x^2+y^2+z^2=\frac{x^2}{a^2}\left(2\right)\)
từ (1) zà (2)
=>\(\left(x+y+z\right)^2=x^2+y^2+z^2\left(dpcm\right)\)
Có \(a+b+c=a^2+b^2+c^2=1\) và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(a;b;c\ne0\right)\left(1\right)\)
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\left(\frac{x}{a}\right)^2=\left(\frac{y}{b}\right)^2=\left(\frac{z}{c}\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\left(2\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}\). Theo \(\left(1\right)\)
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\). Theo \(\left(2\right)\)
Có \(a+b+c=a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2=1^2=1\).
Từ các đẳng thức trên, ta suy ra : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(=\frac{x+y+z}{1}=\frac{\left(x+y+z\right)^2}{1}=\frac{x^2+y^2+z^2}{1}\Leftrightarrow1\left(x+y+z\right)^2=1\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\Leftrightarrowđpcm\)
\(\frac{1}{c}=\frac{1}{2}(\frac{1}{a}+\frac{1}{b})\)
\(\Rightarrow\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)
\(\Rightarrow\frac{2}{c}=\frac{a}{ab}+\frac{b}{ab}\)
\(\Rightarrow\frac{2}{c}=\frac{a+b}{ab}\)
\(\Rightarrow2ab=(a+b)\cdot c\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ab-bc=ac-ab\)
\(\Rightarrow b(a-c)=a(c-b)\)
\(\frac{a}{c}=\frac{a-c}{c-b}(đpcm)\)
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}.\left(\frac{a+b}{ab}\right)\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
\(\Rightarrow ac+cb=2ab\Rightarrow ac-ab=-cb+ba\Rightarrow a.\left(c-b\right)=b.\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
bn ghi sai đề kìa :v
\(a)\)\(b^2-b+3\left(b+1\right)=0\)
\(\Leftrightarrow\)\(b^2-b+3b+3=0\)
\(\Leftrightarrow\)\(b^2+2b+1=-2\)
\(\Leftrightarrow\)\(\left(b+1\right)^2=-2\) ( vô lí vì \(\left(b+1\right)^2\ge0\) )
Vậy không có giá trị của b thỏa mãn đề bài
Chúc bạn học tốt ~
\(b)\)\(\frac{4x-3}{2}=\frac{5-2x}{3}\)
\(\Leftrightarrow\)\(3\left(4x-3\right)=2\left(5-2x\right)\)
\(\Leftrightarrow\)\(12x-9=10-4x\)
\(\Leftrightarrow\)\(12x+4x=10+9\)
\(\Leftrightarrow\)\(16x=19\)
\(\Leftrightarrow\)\(x=\frac{19}{16}\)
Vậy \(x=\frac{19}{16}\)
Chúc bạn học tốt ~
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{2}{c}=\frac{a+b}{ab}\)
\(\Leftrightarrow2ab=c\left(a+b\right)\left(2\right)\)
Mà \(\frac{a}{b}=\frac{a-c}{c-b}\)
\(\Leftrightarrow ac-ab=ab-bc\)
\(\Leftrightarrow2ab=c\left(a+b\right)\left(1\right)\)
Nhận thấy ( 1 )=( 2 ) => đpcm
https://olm.vn/hoi-dap/detail/211794512831.html
Tham khảo ở link này (mình gửi cho)
Học tốt!!!!!!!!!!
Xét \(a+b+c=0\) thì \(\hept{\begin{cases}a+2b=c\\b+2c=a\\c+2a=b\end{cases}}\)\(\Rightarrow P=\frac{\left(2a+b\right)\left(2b+c\right)\left(2c+a\right)}{abc}=1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(a+b+c=\frac{a+2b-c}{c}=\frac{b+2c-a}{a}+\frac{c+2a-b}{b}=\frac{a+2b-c+b+2c-a+c+2a-b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=2\)
\(\Rightarrow\hept{\begin{cases}a+2b=3c\\b+2c=3a\\c+2a=3b\end{cases}}\)\(\Rightarrow P=\frac{3a.3b.3c}{abc}=27\)
Có a+2b-c/c=b+2c-a/a=c+2a-b/b
suy ra a+2b-c/c=b+2c-a/a=c+2a-b/b=a+2b-c+b+2c-a+c+2a-b/a+b+c=2a+2b+2c/a+b+c=2
suy ra a+2b-c=2c suy ra a+2b=3c
b+2c-a=2a suy ra b+2c=3a
c+2a-b=2b suy ra c+2a=3b
Có P=(2+a/b)(2+b/c)(2+c/a)=(2b+a/b)(2c+b/c)(2a+c/a)=(3c/b)(3a/c)(3b/a)=27abc/abc=27
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\left(a+b+c>0\right)\)
\(\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow\left(\frac{b+c}{a}\right)^2=\left(\frac{c+a}{b}\right)^2=\left(\frac{a+b}{c}\right)^2=2^2\)
\(\Rightarrow\frac{\left(b+c\right)^2}{a^2}=\frac{\left(c+a\right)^2}{b^2}=\frac{\left(a+b\right)^2}{c^2}=4\)
\(\Rightarrow\frac{\left(a+b\right)^2}{c^2}+\frac{\left(c+a\right)^2}{b^2}+\frac{\left(b+c\right)^2}{a^2}=4+4+4=12\left(đpcm\right)\)
Vậy...
cảm ơn bn !
bn biết lm bài này ko ?
lm luôn giúp mik vs !
link :https://hoc24.vn/hoi-dap/question/174562.html
Ta có : a/b=b/c
suy ra ac= b^2 thay vào ta có
a^2+ ac/ ac+c^2 = a(a+c)/ c(a+c) = a/c
vậy a^2+b^2/ b^2 + c^2 = a/c
\(từ\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=ck,b=dk\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{ck+c}{dk+d}=\frac{c^2k^2+c^2}{d^2k^2+d^2}=\frac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{c^2}{d^2}=\frac{a^2}{b^2}=\frac{a}{c}\)(đpcm)
HỌCtốt