K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

\(=\left[\dfrac{2x-3}{\left(2x-5\right)\left(2x-1\right)}-\dfrac{3}{2x-1}-\dfrac{2\left(x-4\right)}{\left(x-4\right)\left(2x-5\right)}\right].\dfrac{2x\left(2x+3\right)-\left(2x+3\right)}{-2x\left(4x-7\right)-3\left(4x-7\right)}+1\)

\(=\left[\dfrac{2x-3-6x+15-4x+2}{\left(2x-5\right)}\right].\dfrac{2\left(x+\dfrac{3}{2}\right)}{\left(-2x-3\right)\left(4x-7\right)}+1\)

\(=\dfrac{-2\left(4x-7\right)}{2x-5}.\dfrac{2\left(x+\dfrac{3}{2}\right)}{\left(-2x-3\right)\left(4x-7\right)}+1\)

\(=\dfrac{1}{2x-5}.2+1\)

\(=\dfrac{2+2x-5}{2x-5}\)

\(=\dfrac{-3+2x}{2x-5}\)

NV
27 tháng 2 2019

ĐKXĐ: \(x\ne\left\{\dfrac{-3}{2};\dfrac{1}{2};\dfrac{7}{4};\dfrac{5}{2};4;\right\}\)

\(P=\left(\dfrac{2x-3}{\left(2x-1\right)\left(2x-5\right)}-\dfrac{3}{2x-1}-\dfrac{2\left(x-4\right)}{\left(2x-5\right)\left(x-4\right)}\right)\div\dfrac{\left(7-4x\right)\left(2x+3\right)}{\left(2x-1\right)\left(2x+3\right)}+1\)

\(P=\left(\dfrac{2x-3-3\left(2x-5\right)-2\left(2x-1\right)}{\left(2x-1\right)\left(2x-5\right)}\right)\dfrac{2x-1}{7-4x}+1\)

\(P=\dfrac{-8x+14}{\left(2x-5\right)\left(7-4x\right)}+1=\dfrac{2}{2x-5}+1\)

b/ \(\left|x\right|=\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Với \(x=\dfrac{1}{2}\Rightarrow P=\dfrac{2}{2.\dfrac{1}{2}-5}+1=\dfrac{1}{2}\)

Với \(x=\dfrac{-1}{2}\Rightarrow P=\dfrac{2}{2.\left(\dfrac{-1}{2}\right)-5}+1=\dfrac{2}{3}\)

c/ Để P nguyên \(\Rightarrow\dfrac{2}{2x-5}\) nguyên \(\Rightarrow2⋮\left(2x-5\right)\Rightarrow2x-5=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)

\(2x-5=-2\Rightarrow x=\dfrac{3}{2}\left(l\right)\)

\(2x-5=-1\Rightarrow x=2\)

\(2x-5=1\Rightarrow x=3\)

\(2x-5=2\Rightarrow x=\dfrac{7}{2}\left(l\right)\)

Vậy \(x=\left\{2;3\right\}\) thì P nguyên

d/ \(P>0\Rightarrow\dfrac{2}{2x-5}+1>0\Rightarrow\dfrac{2x-3}{2x-5}>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3>0\\2x-5>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-3< 0\\2x-5< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x< \dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x>\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x< \dfrac{3}{2}\\x>\dfrac{5}{2}\end{matrix}\right.\)

28 tháng 2 2019

Thanks ạ!

a: \(=\left(\dfrac{2x-3}{\left(2x-5\right)\left(2x-1\right)}-\dfrac{2x-8}{\left(2x-5\right)\left(x-4\right)}-\dfrac{3}{2x-1}\right)\cdot\dfrac{4x^2+4x-3}{-8x^2+2x+21}+1\)

\(=\dfrac{2x-3-2\left(2x-1\right)-3\left(x-4\right)}{\left(2x-1\right)\left(2x-5\right)}\cdot\dfrac{\left(2x+3\right)\left(2x-1\right)}{\left(4x-7\right)\cdot\left(-2x-3\right)}+1\)

\(=\dfrac{2x-3-4x+2-3x+12}{1}\cdot\dfrac{-1}{4x-7}+1\)

\(=\dfrac{5x-11}{4x-7}+1=\dfrac{9x-4}{4x-7}\)

b: |x|=1/2

=>x=1/2(loại) hoặc x=-1/2(nhận)

Khi x=-1/2 thì \(P=\dfrac{\dfrac{-9}{2}-4}{-2-7}=-\dfrac{17}{2}:\left(-9\right)=\dfrac{17}{18}\)

c: Để P là số nguyên thì \(36x-16⋮4x-7\)

\(\Leftrightarrow4x-7\in\left\{1;-1;47;-47\right\}\)

hay \(x\in\left\{2;\dfrac{3}{2};\dfrac{27}{2};-10\right\}\)

9 tháng 8 2017

a. A=(3x-2)(3x+2)/(2x-1)(2x+1)+(2x+1)(x-1)=(3x-2)(3x+2)/(2x+1)(3x-2)=3x+2/2x+1

b. A>0

=>3x+2 lớn hơn hoặc bằng 2x+1

=>x lớn hơn hoặc bằng -1

c. Để A thuộc z thì 3x+2 chia hết cho 2x+1

=>x = -1/2

      = 1+ x+1/2x+1 = 1+ 2x+1-x/2x+1=1+ 2x+1/2x+1 -x/2x+1

23 tháng 6 2018

a) \(\dfrac{x}{x-3}-\dfrac{x^2+3x}{2x+3}\left(\dfrac{x+3}{x^2-3x}-\dfrac{x}{x^2-9}\right)\)

ĐKXĐ:\(\left\{{}\begin{matrix}x-3\ne0\\2x +3\ne0\\x^2-3x\ne0\\x^2-9\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-\dfrac{3}{2}\\x\ne0\\x\ne\pm3\end{matrix}\right.\)

\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}\left(\dfrac{x+3}{x\left(x-3\right)}-\dfrac{x}{\left(x-3\right)\left(x+3\right)}\right)\)

\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}.\dfrac{\left(x+3\right)^2-x^2}{x\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}.\dfrac{\left(x+3-x\right)\left(x+3+x\right)}{x\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right).3\left(2x+3\right)}{\left(2x+3\right)x\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x}{x-3}-\dfrac{3}{x-3}\)

\(=\dfrac{x-3}{x-3}\)

=1

\(\Rightarrow\) ĐPCM