Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{11}\left(1+2\right)=3\left(2+2^3+...+2^{11}\right)⋮3\)
\(S=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)=7\left(2+...+2^{10}\right)⋮7\)
Vì S chia hết cho 2 và S chia hết cho 3
nên \(S⋮6\)
\(3.\overline{abcabc}-605=3.\left(1000\overline{abc}+\overline{abc}\right)-605=3.1001.\overline{abc}-695=11\left(273\overline{abc}-55\right)⋮11\)
\(\overline{3ab3}-\overline{3ba3}=3003-3003+\overline{ab0}-\overline{ba0}=10\left(\overline{ab}-\overline{ba}\right)=10\left(10a+b-10b-a\right)\)
\(=10\left(9a-9b\right)=90\left(a-b\right)⋮90\)
\(\overline{aaa}+\overline{bbb}=111.a+111.b=111\left(a+b\right)=37\times3\times\left(a+b\right)⋮37\)
\(\overline{abc}+\overline{bca}+\overline{cab}=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)
\(=111\left(a+b+c\right)=37\times3\times\left(a+b+c\right)⋮37\)
1) 55 - 54 + 53 = 53 . 52 - 53 . 5 - 53
= 53 . ( 52 - 5 + 1 )
= 53 . ( 25 - 5 - 1 )
= 53 . 21
= 53 . 3 . 7 chia hết cho 7
Vậy chứng minh 55 - 54 + 53 chia hết cho7
2) 76 + 75 - 74 = 74 . 72 + 74 . 7 - 74
= 74 . ( 72 + 7 - 1 )
= 74 . ( 49 + 7 - 1 )
= 74 . 55
= 74 . 5 .11 chia hết cho 11
Vậy chứng minh 76 + 75 - 74 chia hết cho 11
Tích mình nha !!!!!!!!!!!!!!!!!
55-54+53=53.(52-51+50)=53.(25-5+1)=53.21=53.3.7 chia hết cho 7
=>ĐPCM
76+75-74=74.(72+71-70)=74.(49+7-1)=74.55=74.5.11 chia hết cho 11
=>ĐPCM
Bài 1:
a+b=b+a
a(b+c)=ab+ac
Bài 3:
\(a^n\cdot a^m=a^{n+m}\)
\(a^n:a^m=a^{n-m}\)
Bài 4:
a chia hết cho b khi b là ước của a và a là bội của b
1,
\(A=2^0+2^1+2^2+..+2^{2006}\)
\(=1+2+2^2+...+2^{2016}\)
\(2A=2+2^2+2^3+..+2^{2007}\)
\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)
\(A=2^{2017}-1\)
\(B=1+3+3^2+..+3^{100}\)
\(3B=3+3^2+3^3+..+3^{101}\)
\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)
\(2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{100}-1}{2}\)
\(D=1+5+5^2+...+5^{2000}\)
\(5D=5+5^2+5^3+...+5^{2001}\)
\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)
\(4D=5^{2001}-1\)
\(D=\frac{5^{2001}-1}{4}\)