Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2+n+1=n.(n+1)+1
do n.(n+1) là tích hai số tự nhiên liên tiếp nên nó chia hết cho 2.Khi nó cộng với 1 thì sẽ không chia hết cho 2
do n.(n+1) là tích hai số tự nhiên liên tiếp nên nó có chữ số tận cùng là 0,2,6 và khi cộng với 1 thì có đuôi là 1,3,7 và không chia hết cho 5
vậy số đó không chia hết cho 2 và 5
1.
Trường hợp 1:
Nếu n=2k
Thì n.(n+5)=2k.(2k+5)
Vì 2k chia hết cho 2 nên tích n.(n+1) chia hết cho 2
Trường hợp 2:
Nếu n=2k+1
Thì n.(n+1)=2k+1(2k+1+1)
=>(2k+1)(2k+2)
Vì 2k+2 chia hết cho 2 nên tích n(n+1) chia hết cho 2
2.
\(n^2+n+1\)
\(n^2+n=n.n+n.1=n.\left(n+1\right)\)
\(\text{Vì :}n.\left(n+1\right)\text{là tích hai số tự nhiên liên tiếp nên có tận cùng là : 2,6,0}\)
\(\text{Vậy}.n\left(n+1\right)+1\text{sẽ có tận cùng là 3,7,1}\)
Vì tận cùng là 3,7,1 nên A không chia hết cho 2, không chia hết cho 5 (đpcm)
Chúc bạn học tốt!!!
1. TH1 : n là số chẵn.
\(\Rightarrow n⋮2\Rightarrow n\left(n+5\right)⋮2\)
TH2 : n là số lẻ
\(\Rightarrow\left(n+5\right)⋮2\Rightarrow n\left(n+5\right)⋮2\)
Từ đó \(\Rightarrow n\left(n+5\right)⋮2\)với mọi \(n\in N\)
2. a) TH1 : Nếu n là số lẻ \(\Rightarrow n^2\)là số lẻ \(\Rightarrow\left(n^2+2\right)⋮2\)
1 là số lẻ \(\Rightarrow\left(n^2+n+1\right)̸\)không chia hết cho 2 (1)
TH2 : Nếu n là số chẵn \(\Rightarrow n^2\)là số chẵn \(\Rightarrow\left(n^2+2\right)⋮2\)
1 là số lẻ \(\Rightarrow\left(n^2+n+1\right)̸\)không chia hết cho 2 (2)
Từ (1) và (2) \(\Rightarrow A\)không chia hết cho 2 với mọi \(n\in N\)
b)
bài1
vì 148 chia ht cho 7 và 111 chia ko chia ht cho 7 => a ko chia ht cho 7
bài 1 :
ta có : a= 148 . q + 111
a= 37.4.q+(37.3)
a = 37 . ( 4.q + 3 ) chia hết cho 37
vậy a chia hết cho 37