K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

Lớn nhất chứ nhỏ nhất làm gì có

Ta có x = 8 - 2y

=> B = (8 - 2y)y = - 2y2 + 8y = - (2y - \(2×\sqrt{2}×2×\sqrt{2}y\) + 8) + 8

= - ( \(\sqrt{2}y-2\sqrt{2}\))2 + 8 \(\le8\)

Vậy GTLN là 8 khi x = 4; y = 2

18 tháng 9 2016

bn ơi, còn câu này nữa

cho a+b=2. tìm GTNN của A =\(a^2+b^2\)

15 tháng 11 2016

A(-7; -20)

 

2 tháng 8 2017

\(P=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\)

\(\Leftrightarrow2P=2x^2-2x\sqrt{y}+2x+2y-2\sqrt{y}+2\)

\(=\left[\left(x^2-2x\sqrt{y}+y\right)+\frac{4}{3}.\left(x-\sqrt{y}\right)+\frac{4}{9}\right]+\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\left(y-\frac{2}{3}.\sqrt{y}+\frac{1}{9}\right)+\frac{4}{3}\)

\(=\left(x-\sqrt{y}+\frac{2}{3}\right)^2+\left(x+\frac{1}{3}\right)^2+\left(\sqrt{y}-\frac{1}{3}\right)^2+\frac{4}{3}\ge\frac{4}{3}\)

\(\Rightarrow P\ge\frac{2}{3}\)

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

Lời giải:

Bổ sung ĐK $x,y\geq 0$ để các biểu thức có nghĩa.

a)

\(A=x+y-8\sqrt{x}-2\sqrt{y}-2019=(x-8\sqrt{x}+16)+(y-2\sqrt{y}+1)-2036\)

\(=(\sqrt{x}-4)^2+(\sqrt{y}-1)^2-2036\)

Ta thấy \((\sqrt{x}-4)^2\geq 0; (\sqrt{y}-1)^2\geq 0\) với mọi \(x,y\geq 0\)

Do đó: \(A=(\sqrt{x}-4)^2+(\sqrt{y}-1)^2-2036\geq -2036\)

Vậy GTNN của $A$ là $-2036$ khi \(\left\{\begin{matrix} \sqrt{x}-4=0\\ \sqrt{y}-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=16\\ y=1\end{matrix}\right.\)

b)

\(B=x+y+12\sqrt{x}-4\sqrt{y}+19=(x+12\sqrt{x})+(y-4\sqrt{y}+4)+15\)

\(=x+12\sqrt{x}+(\sqrt{y}-2)^2+15\)

Ta thấy: \(x+12\sqrt{x}\geq 0; (\sqrt{y}-2)^2\geq 0, \forall x,y\geq 0\)

\(\Rightarrow B\ge 0+0+15=15\)

Vậy GTNN của $B$ là $15$ khi \(\left\{\begin{matrix} x+12\sqrt{x}=0\\ \sqrt{y}-2=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=0\\ y=4\end{matrix}\right.\)

c)

\(C=2x+y-10\sqrt{x}-6\sqrt{y}+2\sqrt{xy}+8\)

\(=(x+y+2\sqrt{xy})+x-10\sqrt{x}-6\sqrt{y}+8\)

\(=(\sqrt{x}+\sqrt{y})^2-6(\sqrt{x}+\sqrt{y})+(x-4\sqrt{x})+8\)

\(=(\sqrt{x}+\sqrt{y})^2-6(\sqrt{x}+\sqrt{y})+9+(x-4\sqrt{x}+4)-5\)

\(=(\sqrt{x}+\sqrt{y}-3)^2+(\sqrt{x}-2)^2-5\)

\(\geq 0+0-5=-5\) với mọi $x,y\ge 0$

Vậy GTNN của $C$ là $-5$ đạt tại \(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}-3=0\\ \sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=1\\ x=4\end{matrix}\right.\)

d)

\(D=2y+x-2\sqrt{x}-2\sqrt{y}+2\sqrt{xy}+2\)

\(=(y+x+2\sqrt{xy})+y-2\sqrt{x}-2\sqrt{y}+2\)

\(=(\sqrt{x}+\sqrt{y})^2-2(\sqrt{x}+\sqrt{y})+1+y+1\)

\(=(\sqrt{x}+\sqrt{y}-1)^2+y+1\)

\(\geq 0+0+1=1\) với mọi $x,y\geq 0$

Vậy GTNN của $D$ là $1$ khi \(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}-1=0\\ y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=0\\ x=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

Bổ sung ĐK $x,y\geq 0$ để các biểu thức có nghĩa.

a)

\(A=x+y-8\sqrt{x}-2\sqrt{y}-2019=(x-8\sqrt{x}+16)+(y-2\sqrt{y}+1)-2036\)

\(=(\sqrt{x}-4)^2+(\sqrt{y}-1)^2-2036\)

Ta thấy \((\sqrt{x}-4)^2\geq 0; (\sqrt{y}-1)^2\geq 0\) với mọi \(x,y\geq 0\)

Do đó: \(A=(\sqrt{x}-4)^2+(\sqrt{y}-1)^2-2036\geq -2036\)

Vậy GTNN của $A$ là $-2036$ khi \(\left\{\begin{matrix} \sqrt{x}-4=0\\ \sqrt{y}-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=16\\ y=1\end{matrix}\right.\)

b)

\(B=x+y+12\sqrt{x}-4\sqrt{y}+19=(x+12\sqrt{x})+(y-4\sqrt{y}+4)+15\)

\(=x+12\sqrt{x}+(\sqrt{y}-2)^2+15\)

Ta thấy: \(x+12\sqrt{x}\geq 0; (\sqrt{y}-2)^2\geq 0, \forall x,y\geq 0\)

\(\Rightarrow B\ge 0+0+15=15\)

Vậy GTNN của $B$ là $15$ khi \(\left\{\begin{matrix} x+12\sqrt{x}=0\\ \sqrt{y}-2=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=0\\ y=4\end{matrix}\right.\)

c)

\(C=2x+y-10\sqrt{x}-6\sqrt{y}+2\sqrt{xy}+8\)

\(=(x+y+2\sqrt{xy})+x-10\sqrt{x}-6\sqrt{y}+8\)

\(=(\sqrt{x}+\sqrt{y})^2-6(\sqrt{x}+\sqrt{y})+(x-4\sqrt{x})+8\)

\(=(\sqrt{x}+\sqrt{y})^2-6(\sqrt{x}+\sqrt{y})+9+(x-4\sqrt{x}+4)-5\)

\(=(\sqrt{x}+\sqrt{y}-3)^2+(\sqrt{x}-2)^2-5\)

\(\geq 0+0-5=-5\) với mọi $x,y\ge 0$

Vậy GTNN của $C$ là $-5$ đạt tại \(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}-3=0\\ \sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=1\\ x=4\end{matrix}\right.\)

d)

\(D=2y+x-2\sqrt{x}-2\sqrt{y}+2\sqrt{xy}+2\)

\(=(y+x+2\sqrt{xy})+y-2\sqrt{x}-2\sqrt{y}+2\)

\(=(\sqrt{x}+\sqrt{y})^2-2(\sqrt{x}+\sqrt{y})+1+y+1\)

\(=(\sqrt{x}+\sqrt{y}-1)^2+y+1\)

\(\geq 0+0+1=1\) với mọi $x,y\geq 0$

Vậy GTNN của $D$ là $1$ khi \(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}-1=0\\ y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=0\\ x=1\end{matrix}\right.\)

23 tháng 10 2016

\(M=\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)

Áp dụng BĐT Cauchy : \(\frac{\sqrt{x-1}}{x}=\frac{\sqrt{\left(x-1\right).1}}{x}\le\frac{x-1+1}{2x}=\frac{1}{2}\)

\(\frac{\sqrt{y-4}}{y}=\frac{\sqrt{\left(y-4\right).4}}{4y}\le\frac{y-4+4}{4y}=\frac{1}{4}\)

Cộng theo vế : \(M\le\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=2\\y=8\end{cases}}\)

Vậy ......................................