\(ChoQ=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

a,ĐK:\(a>0;b>0;a\ne b\)

b,\(A=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\\ A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\\ A=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=0\)

Vậy khi A có nghĩa thì A không phụ thuộc vào a

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

8 tháng 7 2016

 Trước hết ta rút gọn D :

 \(D=\left(\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}}\right):\left(1+\frac{a+b+2ab}{1-ab}\right)\)(ĐKXĐ : \(a\ne0,b\ne0,ab\ne1\))

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(1+\sqrt{ab}\right)+\left(\sqrt{a}-\sqrt{b}\right)\left(1-\sqrt{ab}\right)}{\left(1-\sqrt{ab}\right)\left(1+\sqrt{ab}\right)}:\frac{1+a+b+ab}{1-ab}\)

\(=\frac{2\sqrt{a}\left(b+1\right)}{1-ab}.\frac{1-ab}{\left(a+1\right)\left(b+1\right)}=\frac{2\sqrt{a}}{a+1}\)

a) Với \(a=\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow D=\frac{2\sqrt{\left(\sqrt{3}-1\right)^2}}{4-2\sqrt{3}+1}=\frac{2\left(\sqrt{3}-1\right)}{5-2\sqrt{3}}\)

b) Ta có : \(\left(\sqrt{a}-1\right)^2\ge0\Leftrightarrow a+1\ge2\sqrt{a}\Leftrightarrow\frac{2\sqrt{a}}{a+1}\le1\)

Suy ra Max D = 1 <=> a = 1

3 tháng 4 2020

a) P = \(\left(\frac{3\sqrt{a}}{a+\sqrt{a}+b}-\frac{3a}{a\sqrt{a}-b\sqrt{b}}+\frac{1}{\sqrt{a}-\sqrt{b}}\right):\frac{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}{\left(2.a+2.\sqrt{ab}+2.b\right)}\)

        = \(\left(\frac{3\sqrt{a}.\left(\sqrt{a}-\sqrt{b}\right)-3.a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right).\left(a+\sqrt{ab}+b\right)}\right).\frac{2.\left(a+\sqrt{ab}+b\right)}{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}\)

        \(\frac{a-2.\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}.\frac{2}{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}\)

          = \(\frac{2}{a-1}\)

b) P nguyên <=> \(\frac{2}{a-1}\)nguyên => 2 \(⋮\)a - 1 

=> ( a- 1 ) = { \(\pm\)1 ; \(\pm\) 2} => a = { -1 ; 0 ; 2 ;3 }