Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì \(1-\sqrt{5}< 0\)nên hàm nghịch biến
b, \(x=1+\sqrt{5}x\)
\(\Leftrightarrow x-x\sqrt{5}=1\)
\(\Leftrightarrow x\left(1-\sqrt{5}\right)=1\)
\(\Leftrightarrow x=\frac{1}{1-\sqrt{5}}\)
Khi đó \(y=\left(1-\sqrt{5}\right).\frac{1}{1-\sqrt{5}}-1=1-1=0\)
b, \(y=-\sqrt{5}\)
\(\Leftrightarrow\left(1-\sqrt{5}\right)x-1=-\sqrt{5}\)
\(\Leftrightarrow\left(1-\sqrt{5}\right)x=1-\sqrt{5}\)
<=> x = 1
\(\left(m^2-4m+5\right)x^2\)
\(m^2-4m+5=m^2-2\cdot m\cdot2+2^2+1=\left(m-2\right)^2+1>0\)với mọi m
=> \(a>0\)
Do đóhàm số nghịch biến khi x<0 và đồng biến khi x>0
a) \(\sqrt{4\left(a-3\right)^2}=\sqrt{2^2\left(a-3\right)^2}=2\sqrt{\left(a-3\right)^2}=2.\left|a-3\right|=2\left(a-3\right)=2a-6\) (Vì \(a\ge3\) )
b) \(\sqrt{9\left(b-2\right)^2}=\sqrt{3^2\left(b-2\right)^2}=3\sqrt{\left(b-2\right)^2}=3\left|b-2\right|=3\left(2-b\right)\)
\(=6-3b\) (vì b < 2 )
b) \(\sqrt{27.48\left(1-a\right)^2}=\sqrt{27.3.16.\left(1-a\right)^2}=\sqrt{81.16.\left(1-a\right)^2}\)
\(=\sqrt{9^2.4^2.\left(1-a\right)^2}=9.4\sqrt{\left(1-a\right)^2}=36.\left|1-a\right|=36\left(1-a\right)=36-36a\) (vì a > 1)
Đáp án C
Hàm số bậc nhất y = ax + b xác định với mọi giá trị của thuộc R và có tính chất sau:
• Đồng biến trên R nếu a > 0
• Nghịch biến trên R nếu a < 0