Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x : y : z : t = 2 : 3 : 4 : 5
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{2}{7}\)
\(\Rightarrow x=\frac{2}{7}.2=\frac{4}{7};y=\frac{2}{7}.3=\frac{6}{7};z=\frac{2}{7}.4=\frac{8}{7};t=\frac{2}{7}.5=\frac{10}{7}\)
Ta có: \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{49}{7}=7\)
\(\Rightarrow x=7.10=70;y=7.15=105;z=7.12=84\)
Ta có
\(\frac{2x+y+z+t}{x}=\frac{x+2y+z+t}{y}=\frac{x+y+2z+t}{z}=\frac{x+y+z+2t}{t}\)
\(\Rightarrow1+\frac{x+y+z+t}{x}=1+\frac{x+y+z+t}{y}=1+\frac{x+y+z+t}{z}=1+\frac{x+y+z+t}{t}\)
\(\Rightarrow\frac{x+y+z+t}{x}=\frac{x+y+z+t}{y}=\frac{x+y+z+t}{z}=\frac{x+y+z+t}{t}\)
Xét 2 trường hợp
Nếu \(x+y+z+t=0\)
\(\Rightarrow\left\{\begin{matrix}x+y=-z-t\\y+z=-t-x\\t+x=-y-z\\z+t=-x-y\end{matrix}\right.\)
Ta có \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
\(=\frac{-z-t}{z+t}+\frac{-t-x}{t+x}+\frac{-x-y}{x+y}+\frac{-y-z}{y+z}\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(=\left(-4\right)\)
Nếu \(x=y=z=t\)
Ta có \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
\(=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}\)
\(=1+1+1+1\)
\(=4\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\\\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\\\frac{1}{x}+\frac{1}{z}=-\frac{1}{y}\end{cases}}\)
\(P=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)
\(=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)
\(=y\left(\frac{1}{x}+\frac{1}{z}\right)+x\left(\frac{1}{z}+\frac{1}{y}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=y.\frac{-1}{y}+x.\frac{-1}{x}+z.\frac{-1}{z}\)
\(=-1-1-1=-3\)
P+3=\(\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1=\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)
P+3=\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0.\left(x+y+z\right)=0\)
=> P=\(-3\)
Chuc ban hoc tot
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2019}{y}=\frac{x+y-2020}{z}=\frac{y+z+1+x+z+2019+x+y-2020}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow2=\frac{1}{x+y+z}\)\(\Rightarrow x+y+z=\frac{1}{2}\)
Ta có:
+) \(\frac{y+z+1}{x}=2\)\(\Rightarrow y+z+1=2x\)\(\Rightarrow x+y+z+1=3x\)\(\Rightarrow\frac{1}{2}+1=3x\)\(\Rightarrow3x=\frac{3}{2}\)\(\Rightarrow x=\frac{1}{2}\)
+) \(\frac{x+z+2019}{y}=2\)\(\Rightarrow x+z+2019=2y\)\(\Rightarrow x+y+z+2019=3y\)\(\Rightarrow\frac{1}{2}+2019=3y\)\(\Rightarrow3y=\frac{4039}{2}\)\(\Rightarrow y=\frac{4039}{6}\)
+) \(\frac{x+y-2020}{z}=2\)\(\Rightarrow x+y-2020=2z\)\(\Rightarrow x+y+z-2020=3z\)\(\Rightarrow\frac{1}{2}-2020=3z\)\(\Rightarrow3z=\frac{-4039}{2}\)\(\Rightarrow z=\frac{-4039}{6}\)
Lại có: \(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{4039}{6}\right)^{2017}+\left(\frac{-4039}{6}\right)^{2017}=4032+\left(\frac{4039}{6}\right)^{2017}-\left(\frac{4039}{6}\right)^{2017}=4032\)
\(2x^2+2y^2-3z^2=-100\left(1\right)\)
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\)\(\left(2\right)\)
Thay (2) vào (1) ta được:
\(2.\left(3k\right)^2+2.\left(4k\right)^2-3.\left(5k\right)^2=-100\)
\(\Leftrightarrow18k^2+32k^2-75k^2=-100\)
\(\Leftrightarrow-25k^2=-100\)
\(\Leftrightarrow k^2=4\)
\(\Leftrightarrow k=\pm2\)
TH1: Thay k=2 vào (2) ta được
\(\left\{{}\begin{matrix}x=3.2=6\\y=4.2=8\\z=5.2=10\end{matrix}\right.\)
TH2: Thay k=-2 vào (2) ta được:
\(\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=4.\left(-2\right)=-8\\z=5.2\left(-2\right)=-10\end{matrix}\right.\)
Vậy \(\left(x,y,z\right)=\left\{\left(6,8,10\right);\left(-6,-8,-10\right)\right\}\)
Ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}.\)
=> \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
=> \(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\) và \(2x^2+2y^2-3z^2=-100.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow\left[{}\begin{matrix}y=8\\y=-8\end{matrix}\right.\\\frac{z^2}{25}=4\Rightarrow z^2=100\Rightarrow\left[{}\begin{matrix}z=10\\z=-10\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(6;8;10\right),\left(-6;-8;-10\right).\)
Chúc bạn học tốt!
b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....