K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2020
https://i.imgur.com/JMG8jjI.jpg
NV
28 tháng 8 2020

3.

\(\left|2x-4\right|< 10\Leftrightarrow-10< 2x-4< 10\)

\(\Leftrightarrow-3< x< 7\)

\(\Rightarrow C=\left(-3;7\right)\)

\(\left|-3x+5\right|>8\Rightarrow\left[{}\begin{matrix}-3x+5>8\\-3x+5< -8\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x< -1\\x>\frac{13}{3}\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-1\right)\cup\left(\frac{13}{3};+\infty\right)\)

\(\Rightarrow C\cap D=\left(-3;-1\right)\cap\left(\frac{13}{3};7\right)\)

\(\Rightarrow\left(C\cap\right)D\cup E=\left(-3;7\right)\)

4.

Hình như cái đề chẳng liên quan gì đến đáp án hết :)

NV
28 tháng 8 2020

1.

\(A\cap B\ne\varnothing\Leftrightarrow\left\{{}\begin{matrix}2m-1\le m+2\\2m+3\ge m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\m\ge-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le3\)

2.

\(\frac{5}{\left|2x-1\right|}>2\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\\left|2x-1\right|< \frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{5}{2}< 2x-1< \frac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{3}{4}< x< \frac{7}{4}\end{matrix}\right.\)

Rất tiếc tập này không thể liệt kê được (có vô số phần tử)

28 tháng 8 2016

x - 5 = 13

x      = 13 + 5

x      = 18

=> x ={ 18}

có 1 phần tử

28 tháng 8 2016

x + 8 = 8

x       = 8 - 8

x       = 0

=> x = { 0}

tập hợp có 1 phần tử
 

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Bài 1:

a) \(\Delta=(1-\sqrt{3})^2-4(\sqrt{3}-2)=12-6\sqrt{3}>0\) nên pt có nghiệm.

Mệnh đề A sai.

b)

\(x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0, \forall x\in\mathbb{R}\)

\(\Rightarrow x^2\geq x-\frac{1}{4} , \forall x\in\mathbb{R}\). Mệnh đề B đúng.

c) Sai, $2017$ chỉ có ước là 1 và chính nó nên là số nguyên tố.

d) \(x^2+y^2-\frac{3}{2}y+\frac{3}{4}-xy=(x^2+\frac{y^2}{4}-xy)+\frac{3}{4}y^2-\frac{3}{2}y+\frac{3}{4}\)

\(=(x-\frac{y}{2})^2+\frac{3}{4}(y^2-2y+1)=(x-\frac{y}{2})^2+\frac{3}{4}(y-1)^2\)

\(\geq 0+\frac{3}{4}.0=0\) với mọi $x,y$

\(\Rightarrow x^2+y^2-\frac{3}{2}y+\frac{3}{4}\geq xy\)

Mệnh đề đúng.

29 tháng 8 2018

còn bài 2 giải sao thầy

1: A=[-3;6)

C={1;3}

2: B\(\cap\)C={1}

A\B=[-3;-1)

NV
29 tháng 9 2020

\(x^2+2\left(m-3\right)x-4m+8=0\) (1)

\(\Leftrightarrow x^2-6x+8+2m\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)+2m\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4+2m\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-2m+4\end{matrix}\right.\)

Vậy \(Y=\left\{2;-2m+4\right\}\)

Xét pt \(x^2+4x-2m+10=0\left(2\right)\)

a/ Để \(X\cup Y\)có đúng 4 phần tử \(\Leftrightarrow\) (1) và (2) đều có 2 nghiệm pb và ko có nghiệm chung

\(\Leftrightarrow\left\{{}\begin{matrix}-2m+4\ne2\\\Delta'_{\left(2\right)}=4-\left(-2m+10\right)>0\\2^2+4.2-2m+10\ne0\\\left(-2m+4\right)^2+4.\left(-2m+4\right)-2m+10\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m>3\\m\ne11\\\left\{{}\begin{matrix}m\ne\frac{7}{2}\\m\ne3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>3\\m\ne\left\{\frac{7}{2};11\right\}\end{matrix}\right.\)

NV
29 tháng 9 2020

b/

Để (1) và (2) có (thể có) 2 nghiệm chung

\(\Rightarrow\left\{{}\begin{matrix}2m-6=4\\-4m+8=-2m+10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=5\\m=-1\end{matrix}\right.\) (ko tồn tại m thỏa mãn)

Vậy (1) và (2) luôn có tối đa 1 nghiệm chung

Để (2) có nghiệm \(\Rightarrow\Delta'_{\left(2\right)}\ge0\Rightarrow m\ge3\)

\(X\cap Y\) có 1 phần tử khi và chỉ khi (1) và (2) có 1 nghiệm chung \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2m+4\end{matrix}\right.\) là nghiệm của (2)

TH1: \(x=2\) là nghiệm của (2)

\(\Rightarrow2^2+4.2-2m+10=0\)

\(\Leftrightarrow m=11\)

TH2: \(x=-2m+4\) là nghiệm của (2)

\(\Leftrightarrow\left(-2m+4\right)^2+4\left(-2m+4\right)-2m+10=0\)

\(\Leftrightarrow4m^2-26m+42=0\Leftrightarrow\left[{}\begin{matrix}m=3\\m=\frac{7}{2}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=11\\m=3\\m=\frac{7}{2}\end{matrix}\right.\)

NV
29 tháng 9 2020

\(x^4-2x^3+\left(m-14\right)x^2+\left(2m+6\right)x-3m+9=0\)

\(\Leftrightarrow x^4-2x^3-14x^2+6x+9+m\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2-4x-3\right)+m\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2-4x+m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-3=0\\x^2-4x+m-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\\x^2-4x+m-3=0\left(1\right)\end{matrix}\right.\)

a/ Tập X có đúng 4 phần tử khi và chỉ khi (1) có 2 nghiệm pb khác 1 và -3

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(m-3\right)>0\\1^2-4.1+m-3\ne0\\\left(-3\right)^2-4.\left(-3\right)+m-3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 7\\m\ne6\\m\ne-18\end{matrix}\right.\)

b/ Do (1) không thể đồng thời có 2 nghiệm \(\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) nên X có 2 phần tử khi:

TH1: \(\left(1\right)\) vô nghiệm \(\Leftrightarrow\Delta'< 0\Leftrightarrow m>7\)

TH2: (1) có nghiệm kép \(x=1\) hoặc \(x=-3\)

\(\Rightarrow\left\{{}\begin{matrix}\Delta'=0\\\left[{}\begin{matrix}-\frac{b}{2a}=1\\-\frac{b}{2a}=-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=7\\\left[{}\begin{matrix}2=1\\2=-3\end{matrix}\right.\end{matrix}\right.\) (ko có m thỏa mãn)

Vậy \(m>7\)