Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
ABE = HBE (gt)
BE là cạnh chung
=> ΔABE = ΔHBE (cạnh huyền - góc nhọn)
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: Ta có:ΔABE=ΔHBE
nên BA=BH và EA=EH
=>BE là đường trung trực của AH
c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: EK=EC
hay ΔEKC cân tại E
d: Xét ΔBKC có BA/AK=BH/HC
nên AH//KC
a) Xét hai tam giác vuông ΔABE và ΔHBE có:
∠ABE = ∠HBE (BE là tia phân giác giả thiết)
BE cạnh chung
⇒ ΔABE = ΔHBE (cạnh huyền - góc nhọn)
Vậy ΔABE = ΔHBE
b) AB = HB (2 cạnh tương ứng)
⇒ B thuộc đường trung trực của đoạn AH (1)
AE=HE (2 cạnh tương ứng)
⇒ E thuộc đường trung trực của đoạn AH (2)
Từ (1) và (2) ⇒ BE là đường trung trực của đoạn AH
Vậy BE là đường trung trực của đoạn AH
c) Xét hai tam giác vuông ΔAEK và ΔHEC có:
∠AEK = ∠HEC (đối đỉnh)
AE = HE (cmt)
⇒ ΔAEK = ΔHEC (cạnh góc vuông - góc nhọn)
⇒ EK = EC (2 cạnh tương ứng) (3)
Vậy EK = EC
d) Ta có: ΔAEK vuông tại A
⇒ ∠K<∠A
⇒ AE<KE (4)
Từ (3) và (4) ⇒ AE<EC
Vậy AE<EC
a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABE=ΔHBE(Cạnh huyền-góc nhọn)
b) Ta có: ΔABE=ΔHBE(cmt)
nên BA=BH(Hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)
Ta có: BA=BH(cmt)
nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: EA=EH(cmt)
nên E nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BE là đường trung trực của AH
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
c Xét ΔBHF vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBF chung
=>ΔBHF=ΔBAC
=>BF=BC
mà góc FBC=60 độ
nên ΔBFC đều
Bạn ơi, cái đề bạn ghi còn thiếu bạn chưa cho chứng minh rằng cái gì ? MIK VẼ CHO BẠN CÁI HÌNH NÈ. CÒN CHỨNG MINH BẠN GHI THIẾU
E C H B A K
ΔEHC vuông tại H có EH < EC (cạnh huyền là lớn nhất trong tam giác vuông)
mà EH = AE (câu b) nên AE < EC.
Xét ΔAEK vuông tại A và ΔHEC vuông tại H có:
AE = EH (chứng minh trên)
⇒ ΔAEK = ΔHEC (cạnh góc vuông – góc nhọn kề)
⇒ EK = EC (hai cạnh tương ứng)
Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
Suy ra: BA=BH và EA=EH
Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔEAK=ΔEHC
Suy ra: AK=HC
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
hay ΔBKC cân tại B
ΔABE = Δ HBE
⇒ BA = BH, EA = EH (các cặp cạnh tương ứng)
⇒ E, B cùng thuộc trung trực của AH
nên đường thẳng EB là trung trực của AH.
Xét ΔABE vuông tại A và ΔHBE vuông tại H có :
BE chung
⇒ ΔABE = ΔHBE (cạnh huyền – góc nhọn)