K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2016

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại C có:

\(AB^2=AC^2+BC^2\Rightarrow AB^2=0,9^2+1,2^2=2,25\\ \Rightarrow AB=1,5\left(m\right)\)

Vì góc A và góc B là 2 góc phụ nhau nên ta có:

\(\sin B=\cos A=\frac{AC}{AB}=\frac{0,9}{1,5}=\frac{3}{5}\)

\(\cos B=sinA=\frac{BC}{AB}=\frac{1,2}{1,5}=\frac{4}{5}\)

\(tanB=cotA=\frac{AC}{BC}=\frac{0,9}{1,2}=\frac{3}{4}\)

\(cotB=tanA=\frac{BC}{AC}=\frac{1,2}{0,9}=\frac{4}{3}\)

13 tháng 9 2016

AB = \(\sqrt{AB^2+AB^2}\) = 2.25 ( pytago )

=> AB = 1.5 (m)

Vì góc A và góc B phụ nhau, ta có:

sin B = cosA= AC/AB = 3/5

cos B = sin A = BC/AB = 4/5

tan B = cot A = AC/BC = 3/4

cot B = tan A = BC/AC = 4/3

18 tháng 10 2018

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

BC2=AB2+AC2=62+82=100BC2=AB2+AC2=62+82=100

Suy ra: BC = 10 (cm)

Ta có:

sinˆB=ACBC=810=0,8sin⁡B^=ACBC=810=0,8

cosˆB=ABBC=610=0,6cos⁡B^=ABBC=610=0,6

tgˆB=ACAB=86=43tgB^=ACAB=86=43

cotgˆC=tgˆB=43

17 tháng 7 2023

\(BC^2=AB^2+AC^2=36+64=100=10^2\)

\(\Rightarrow BC=10\left(cm\right)\)

\(SinB=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\Rightarrow SinC=Sin\left(90-B\right)=CosB=\dfrac{3}{5}\)

\(CosB=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\Rightarrow CosC=Cos\left(90-B\right)=SinB=\dfrac{4}{5}\)

\(tanB=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow tanC=tan\left(90-B\right)=CotB=\dfrac{3}{4}\)

\(CotB=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\Rightarrow cotC=cot\left(90-B\right)=tanB=\dfrac{4}{3}\)

2 tháng 8 2021

pytago=>\(BC=\sqrt{AB^2+AC^2}=10cm\)

\(=>\sin B=\dfrac{AC}{BC}=\dfrac{8}{10}=0,8=\cos C\)

\(=>\cos B=\dfrac{AB}{BC}=\dfrac{6}{10}=0,6=\sin C\)

\(=>\tan B=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}=\cot B\)

\(=>\cot B=\dfrac{AB}{AC}=\dfrac{3}{4}=\tan C\)

NV
2 tháng 8 2021

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

\(\Rightarrow sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

\(cosB=\dfrac{AB}{BC}=\dfrac{3}{5}\)

\(tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\)

\(cotB=\dfrac{AB}{AC}=\dfrac{3}{4}\)

Do tam giác ABC vuông tại A \(\Rightarrow C=90^0-B\)

\(\Rightarrow sinC=sin\left(90^0-B\right)=cosB=\dfrac{3}{5}\)

\(cosC=cos\left(90^0-B\right)=sinB=\dfrac{4}{5}\)

\(tanC=tan\left(90^0-B\right)=cotB=\dfrac{3}{4}\)

Đổi AB=60mm=6cm

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có 

\(\left\{{}\begin{matrix}\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\\\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\\\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\\\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\\\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\\\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\\\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\end{matrix}\right.\)

28 tháng 6 2021

Không cần nói ạ.

10 tháng 11 2018

HS tự làm

24 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

24 tháng 4 2017

Vì hai góc B và C phụ nhau nên sinC=cosB=0,8.

Ta có:

2016-11-05_160011

Nhận xét: Nếu biết sinα (hay cosα) thì ta có thể tính được ba tỷ số lượng giác còn lại.

a: Xét ΔABC có

\(BC^2=AB^2+AC^2\)

hay ΔBCA vuông tại A

23 tháng 10 2021

AB=6(cm)

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{3}{5}\)

\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{4}{3}\)

\(\tan\widehat{C}=\cot\widehat{B}=\dfrac{3}{4}\)