K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

+ Áp dụng định lý Pitago trong tam giác vuông ABC ta có:

A B 2 + A C 2 = B C 2   ⇔ 6 2 + 8 2 = B C 2   ⇔ B C 2 = 100 ⇒ B C = 10 c m

+ Vì BD là đường phân giác của tam giác ABC nên áp dụng tính chất đường phân giác của tam giác, ta có:

B A A D = B C C D ⇔ B A A D = B C C A − A D ⇔ 6 A D = 10 8 − A D

=> AD = 3cm => DC = AC - AD = 8 - 3 = 5cm

Đáp án D.

23 tháng 8 2019

Bài 1)

a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)

Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật

b) Câu này không đúng rồi bạn 

Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân 

Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)

c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông

\(AB^2=BC.BH=13.4\)

\(\Rightarrow AB=2\sqrt{13}\)

\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)

Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)

23 tháng 8 2019

Bài 2)

a) \(ED=AD-AE=17-8=9\)

Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy

\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)

Vậy \(\Delta ABE~\Delta DEC\)

b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)

c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông 

Nên BK = AD và AB = DK 

\(\Rightarrow KC=DC-DK=12-6=6\)

Theo định lý Pytago ta có

\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)

28 tháng 8 2020

Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé

a, Xét tam giác BDA và tam giác KDC có:       Góc BDA= Góc KDC(đối đỉnh)

                                                                         Góc B= Góc K(90 độ)

=>Tam giác BDA đồng dạng với tam giác KDC(g.g)

=>\(\frac{DB}{DA}=\frac{DK}{DC}\)

b, Xét tam giác DBK và tam giác DAC có:      Góc BDK= Góc DAC(đối đỉnh)

                                                                        \(\frac{DB}{DA}=\frac{DK}{DC}\)

=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)

c, Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại B, ta có:

BC2=AC2-AB2

BC2=52-32

BC2=16

BC=4(cm)

Vì AD là phân giác 

=>\(\frac{AB}{AC}=\frac{BD}{CD}\)

=>\(\frac{AB}{AC+AB}=\frac{BD}{CD+BD}\)

=>\(\frac{3}{5+3}=\frac{BD}{BC}\)

=>\(\frac{3}{8}=\frac{BD}{4}\)

=>BD=1,5(cm)

=>CD=BC-BD

     CD=4-1,5

     CD=2,5(cm)

28 tháng 2 2020

A B C H D E F

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Xét tam giác ABC có AD là đường phân giác trong của tam giác ABC (gt)

\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\left(tc\right)\)

\(\Rightarrow\frac{BD}{DC}=\frac{3}{4}\)

\(\Rightarrow\frac{BD}{3}=\frac{DC}{4}=\frac{BD+DC}{3+4}\frac{10}{7}\)(tính chất của dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\\DC=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\end{cases}}\)

b)Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)

c) Xét tam giác ADB có DE là đường phân giác trong của tam giác ADB(gt)

\(\Rightarrow\frac{EA}{EB}=\frac{AD}{BD}\left(tc\right)\)

Xét tam giác ADC có DF là đường phân giác trong của tam giác ADC (gt)

\(\Rightarrow\frac{FC}{FA}=\frac{DC}{DA}\left(tc\right)\)

\(\Rightarrow\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{AD}{BD}.\frac{DB}{DC}.\frac{DC}{DA}=1\left(đpcm\right)\)

14 tháng 12 2017
Khó quá