Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a:
xét tứ giác AEHF, ta có
góc A=90(tam giác ABC vuông tại A)
Góc E=90(E là hinh chiếu của H trên AB nên EH vuông góc với AB tại E)
Góc F=90( F là hình chiếu của H trên AC nên HF vuông góc với AC tại F)
TỪ đó suy ra tứ giác AEHF là hình chữ nhật (tứ giác có 3 góc vuông là HCN)
Câu b:
Xét tam giác ABC vuông tại A ,ta có:
AM=1/2 *BC( định ý đường trung tuyến trong tam giác vuông)
mà AM=2,5cm (gt)
suy ra BC=cm
Vì tam giác ABC vuông tại A(gt)
nên BC^2=AM^2 + AB^2(định lý pytago)
suy ra AC=4cm
xét tam giác ABC ta có:
S(ABC)=1/2(AB*AC)=1/2(3*4)=6cm vuông
C/m 3 điểm thẳng hàng là tìm trọng tâm của tam giác đóa pạn, có trọng tâm ròi =>D,M.F thẳng hàng
P/s : Hình bạn tự vẽ giúp mình nha. Cảm ơn bạn nhiều.
a) Xét 🔺ABM và 🔺DCM có :
AM = MD ( gt )
^AMB = ^DMC ( 2 góc đối đỉnh )
MB = MC ( M là trung điểm của cạnh BC )
=> 🔺ABM = 🔺DCM ( c.g.c )
b) Vì 🔺ABM = 🔺DCM ( cmt )
=> ^BAM = ^CDM ( 2 góc tương ứng ) (1)
và AB = CD ( 2 cạnh tương ứng )
Ta có AB < AC ( gt )
mà AB = CD ( cmt )
=> CD < AC
Xét 🔺ACD có CD < AC ( cmt )
=> ^CAM < ^CDM ( Quan hệ giữa góc và cạnh trong một tam giác ) (2)
Từ (1) và (2) => ^CAM < ^BAM
hay ^BAM > ^CAM ( điều phải chứng minh )
hình như trên
+)Ta có: ΔDMB=ΔENCΔDMB=ΔENC ( g-c-g) ( Vì ˆMBD=ˆNCEMBD^=NCE^ cùng bằng ˆACBACB^)
Nên MD = NE.
+)Xét ΔDMIΔDMI và ΔENIΔENI: ˆD=ˆE=900,MD=NE(cmt)D^=E^=900,MD=NE(cmt)
ˆMID=ˆNIEMID^=NIE^( Hai góc đối đỉnh)
Nên ΔDMI=ΔENIΔDMI=ΔENI( cgv - gn)
⇒MI=NI⇒MI=NI
+)Từ B và C kẻ các đường thẳng lần lượt vuông
Góc với AB và AC cắt nhau tại J.
Ta có: ΔABJ=ΔACJ(g−c−g)⇒JB=JCΔABJ=ΔACJ(g−c−g)⇒JB=JC
Nên J thuộc AL đường trung trực ứng với BC
Mặt khác : Từ ΔDMB=ΔENCΔDMB=ΔENC( Câu a)
Ta có : BM = CN
BJ = CJ ( cm trên)
ˆMBJ=ˆNCJ=900MBJ^=NCJ^=900
Nên ΔBMJ=ΔCNJΔBMJ=ΔCNJ ( c-g-c)
⇒MJ=NJ⇒MJ=NJ hay đường trung trực của MN
Luôn đi qua điểm J cố định.