K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

dúp tớ với ạ đg cần gấp ạ

26 tháng 4 2020

abc nha ban

Hình tự vẽ

a) Ta có : 

AG = GD . Mà GM = \(\frac{1}{2}\) AG 

=> GD = \(\frac{1}{2}\) AG 

Do AG = \(\frac{1}{3}\) AM

=> GD = \(\frac{2}{3}\) AM  (*)

Xét tứ giác GBDC ta có:

BM = MC ( gt ) (1)

GM= MD ( do GD = \(\frac{1}{2}\) AG ) (2)

Từ (1)(2) => Tứ giác GBDC là hình bình hành 

=> GC// và =BD ; BG // và =DC 

Xét tam giác ABD ta có:

AP = P B ( gt ) ( 3)

AG = GD ( gt ) (4)

Từ (3)(4) => PG là đường trung bình của tam giác ABD 

=> PG = \(\frac{1}{2}\)BD .Do BD = GC => PG=\(\frac{1}{2}\)GC 

Mà PG = \(\frac{1}{3}\)PC => GC =\(\frac{2}{3}\)PC(**)

Chứng mình tương tự . Xét tam giác ADC ( làm tường tự cái trên nha )

=> NG=\(\frac{2}{3}\)BN (***)

Từ (*)(**)(***) => Đpcm

b) Xét tam giác DBA ta có :

AG = GD ( gt )

BF=FD ( gt ) 

=> GF là đường trung bình bình của tam giác DAB 

=> GF = \(\frac{1}{2}\)AB( 5)

Ta có : DC = GB ( cm ở câu a )

Do BE = EG ; BG =\(\frac{2}{3}\)BN ( cm ở câu a)

=> EN = BG => EN= DC 

Mà BG// DC ( cm ở câu a) 

=> tứ giác ENCD là hình bình hành ( 1 cặp cạnh // và bằng nha )

=> DE=NC

Mà NC =\(\frac{1}{2}\)AC (6)

=> AN= NC 

Ta lại có BM=MC ( gt) => BI=\(\frac{1}{2}\)BC (7)

Từ (5)(6)(7) => Đpcm

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...

24 tháng 6 2015

Đây nè tự vẽ tự diễn nha

Vì AM VÀ BN LÀ 2 ĐG TRUNG TUYẾN 

=> AN = 1/2 AC = 1/2 . 3 = 3/2

=> BM = 1/2 AB = 1/2 . 4 = 2 

ĐẶT GN = X => GB = 2X ( TÍNH CHẤT TRỌNG TÂM)

          GM = Y => GA = 2Y ( .....)

TAM GIÁC ANG VUÔNG TẠI N , THEO PYTAGO

                       GN^2 + GA^2 = AN^2 

              =>   X^2 + (2Y)^2       = (3/2) ^2 

             => X^2 + 4Y^2           = 9/4  (1)

tAM GIÁC GBM VUÔNG TẠI G THEO PY TA GO:

                 GM^2 + GB^2 = MB^2 

          =>  Y^2+  ( 2X)^2     =  2^2 

        =>  Y^2  + 4X^2          = 4 

          => 4( Y^2 + 4X^2 )   = 4.4  

         => 4Y^ 2 + 16X^2       = 16 (2)

lấY (2)  - (1) TA CÓ 4Y^2 + 16 X^2 - X^2 - 4Y^2 =  16 -9/4 

                            => 15 X^2                                     =  55/4 

                             => X^2                                          =  11/12 

TA CÓ X^2 + 4 Y^2 = 9/4 <=> 11/12 + 4 .Y^2 = 9/4 => 4Y^2 = 9/4 -11/2 =>4Y ^2 = 4/3 => Y^2 = 1/3

tAM GIÁC GAB VUÔNG TẠI g , THEO PY TA GO 

   (GA)^2 + (GB)^2 = AB^2 

=> (2X)^2 + (2Y)^2  = AB^2

=>4X^2  + 4Y^2      = AB^2

=> 4( X^2 + Y^2 )   = AB^2

=> 4 ( 11/12 + 1 / 3) =AB^2

=> 4.5/4                      = AB^2

=> AB^2 = 5

=> AB    = CĂN 5