Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H
a) Xét tam giác HBA và tam giác ABC :
\(\widehat{AHB}=\widehat{BAC}\left(=90^0\right)\)
\(\widehat{ABC}\)chung
=> tam giác HBA \(~\)tam giác ABC ( đpcm )
b) Chứng minh tương tự câu a) ta có tam giác ABC \(~\)tam giác HAC
\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)
\(\Rightarrow AC^2=HC\cdot BC\)( đpcm )
c) Áp dụng đính lý Pytago vào tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)( cm )
Từ câu b) ta có : \(HC=\frac{AC^2}{BC}=\frac{20^2}{25}=16\)
Vậy....
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC\(\sim\)ΔHAC
b: Ta có: ΔABC\(\sim\)ΔHAC
nên AC/HC=BC/AC
hay \(AC^2=BC\cdot HC\)
c: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
a, Xét Δ ABC và Δ HAC, có :
\(\widehat{ACB}=\widehat{HCA}\) (góc chung)
\(\widehat{BAC}=\widehat{AHC}=90^o\)
=> Δ ABC ∾ Δ HAC (g.g)
b, Ta có : Δ ABC ∾ Δ HAC (cmt)
=> \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\)
=> \(AC^2=BC.HC\)
c, Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=3^2+4^2\)
=> \(BC^2=25\)
=> \(BC=5\left(cm\right)\)
A B C H
XÉT tam giác HBA và tam giác ABC có:
góc AHB= góc CAB=90
góc HBA= góc ABC(góc B chung)
vậy tgiac HBA đồng dạng với tgiac ABC(g.g)
b.Vì tgiac ABC vuông tại A nên áp dụng định lý pytago vào tgiac vuông ABC ta có:
\(AB^2\)+\(AC^2\)=\(BC^2\)