Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: S=8⋅62=24(cm2)S=8⋅62=24(cm2)
2: Xét ΔABC vuông tại A có AH là đường cao
nên AC2=HC⋅BCAC2=HC⋅BC
3: Xét ΔAHB vuông tại H có HM là đường cao
nên AM⋅AB=AH2(1)AM⋅AB=AH2(1)
Xét ΔAHC vuông tại H có HN là đường cao
nên AN⋅AC=AH2(2)AN⋅AC=AH2(2)
Từ (1) và (2) suy ra AM⋅AB=AN⋅ACAM⋅AB=AN⋅AC
=>AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN∼ΔACB
Mọi người ơi giúp mình với,mình sắp phải nộp bài rồi.Mong mọi người giúp đỡ ạ.
a) Xét tam giác BAH và tam giác CAH, có:
AH: cạnh chung
AB = AC ( tam giác ABC cân tại A )
góc AHB = góc AHC ( = 90 độ )
-> tam giác BAH = tam giác CAH ( ch-cgv )
-> HB = HC ( 2 cạnh tương ứng )
b) Xét tam giác FBH và tam giác ECH, có:
HB = HC ( cmt )
góc D = góc E ( = 90 độ )
góc B = góc C ( tam giác ABC cân tại A )
-> tam giác FBH = tam giác ECH ( ch-gn )
-> HF = HE ( 2 cạnh tương ứng )
-> tam giác HEF là tam giác cân tại H
k cho mình nha mỏi tay quá !!! thanks