Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHBvaˋΔAHCΔAHBvàΔAHCcó:
ˆAHB=ˆAHC=AHB^=AHC=^90 độ ( gt )
AH là cạnh chung
AB=AC=5cm ( gt )
Do đó: ΔABH=ΔACHΔABH=ΔACH( cạnh huyền-cạnh góc vuông)
⇒HB=HC⇒HB=HC( 2 cạnh tương ứng )
b) Ta có: HB = HC = 12.BC=12.8=82=412.BC=12.8=82=4 cm
Áp dụng định lí Py-ta-go vào ΔAHBΔAHB vuông tại H, ta có:
BA2=BH2+AH2BA2=BH2+AH2
hay: 52=42+AH2⇒AH2=52<...
tự vẽ hình:
a. xét tam giác vuông AHB và tam giác AHC,ta có:
AB = AC ( gt)
AH là cạnh chung
=> tam giác AHB = tam giác AHC ( cạnh huyền - cạnh góc vuông)
=> HB = HC ( 2 cạnh tương ứng)
=> \(\widehat{BAH}=\widehat{CAH}\) ( 2 góc tương ứng)
mà HB = HC => BC/2 = 8/2= 4 ( cm)
b. xét tam giác vuông BH,theo định lý Pi-ta-go:
AB2 = AH2 + BH2
=> 52 = x2 + 42
=> x2 = 52 - 42
=> x2 = 9
=> \(\sqrt{x}=9\)
=> x = 3
Vậy AH = 3 cm
câu c nghĩ đã :)
a) Xét \(\Delta ABH\)và \(\Delta AHC\)có:
AB = AC (gt)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(\Rightarrow\Delta ABH=\Delta AHC\left(Ch-gn\right)\)
\(\Rightarrow HB=HC\)(2 cạnh tương ứng)
\(\Rightarrow\widehat{BAH}=\widehat{HAC}\)
b) Ta có : HB=HC (cma )
Mà HB + HC = BC
=> HB = HC = 4 cm
Xét \(\Delta ABH\)vuông tại H có : AB2=HA2+BH2 (Pytago)
=> AH2 = AB2 - HB2
=> AH2 = 52 - 42 = 9
=> AH = 3 (cm)
c) Xét \(\Delta HBD\)và \(\Delta HEC\)có:
HB = HC (cma)
\(\widehat{HDB}=\widehat{HEC}\left(=90^o\right)\)
=> \(\Delta HBD=\Delta HEC\left(Ch-gn\right)\)
=> HD = HC ( 2 cạnh tương ứng)
=> \(\Delta HDE\)cân tại H
Nhiều thế.
Bài 1:
B C A
Xét \(\Delta ABC\)có \(AB=AC\)
\(\Rightarrow\Delta ABC\)cân tại \(A\)
\(\Rightarrow\widehat{B}=\widehat{C}=70\)độ
\(\Rightarrow\widehat{A}=180-70-70\)
\(\Rightarrow\widehat{A}=40\)độ
(Mình làm hơi nhanh khúc tính nhé tại đang bận!)
Tiếp nè: Bài 2
A B C H
Bạn xét 2 lần pytago là ra nhé. Lần 1 với \(\Delta AHC\). Lần 2 với \(\Delta AHB\). Thế là xong 2 câu a,b
Bài 3:
B A C H
a) Ta có \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow AH\)vừa là đường cao vừa là trung tuyến
\(\Rightarrow HB=HC\)
b) Câu này không có yêu cầu.
c + d: Biết là \(\widehat{HDE}=90\)và \(\Delta HDE\)nhưng không nghĩ ra cách làm :(
a, vì AM là tpg của A nên BAM=CAM
xét tam giác AMB & AMC có: BAM=CAM(cmt); AB=AC( tam giác ABC cân tại A); góc B=C( tam giác ABC cân tại A)
=> tam giác AMB=AMC(g.c.g)
b,vì tam giác AMB=AMC nên góc AMB=AMC
mà AMB+AMC=1800( 2 góc kề bù)=> AMB=AMC=900=> AM vuông góc với BC
vì tam giác AMB=AMC nên BM=CM(2 cạnh tương ứng)
=> BM=CM=BC:2=3 cm
theo định lí PTG, ta có:
AM2+BM2=AB2
hay AM2= AB2- BM2
<=>AM2=52-32=16
=> AM= 4 cm.
c, xét tam giác BHM và CHM: BM=CM(cmt); góc HMB=HMC(=900); HM là cạnh chung=> tam giác BHM=CHM(c.g.c)=>HB=HC(tương ứng)
xét tam giác HBC có HB=HC(cmt) do đó tam giác HBC cân tại H.
Ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến
=> BH = BC :2 = 6 : 2 =3 cm
áp dụng định lý pitago vào tam giác vuông AHB
\(AB^2=BH^2+AH^2\)
\(AH=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)
b. Xét tam giác vuông BHM và tam giác vuông CHN
BH = CH ( cmt )
góc B = góc C ( ABC cân )
Vậy ..... ( cạnh huyền. góc nhọn )
c. ta có : AM = AB - BM
AN = AC = CN
Mà BM = CN ( 2 cạnh tương ứng ) => AM = AN
=> AMN là tam giác cân
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>HB=HC
b: HB=HC=3cm
=>AH=4cm
AH là phân giác của góc BAC
=>góc BAH=góc CAH
c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>HM=HN
=>ΔHMN cân tại H