Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì SA là tiếp tuyến đường tròn (O) với A là tiếp điểm
=> ^SAO = 900 hay tam giác SAO vuông tại A
Theo định lí Pytago tam giác SAO ta có :
\(SA=\sqrt{SO^2-AO^2}=\sqrt{25-9}=4\)cm
b, Xét tam giác SAO vuông tại A, AH là đường cao
Áp dụng hệ thức : \(AH.SO=AS.AO\Rightarrow AH=\frac{AS.AO}{SO}=\frac{4.3}{5}=\frac{12}{5}\)cm
Áp dụng hệ thức : \(AO^2=HO.SO\Rightarrow HO=\frac{AO^2}{SO}=\frac{9}{5}\)cm
c, Ta có : SB = SA ( tc tiếp tuyến cắt nhau )
AO = BO = R
Vậy SO là đường trung trực đoạn AB
mà AH vuông SO => HB vuông SO
=> A;H;B thẳng hàng
Bài 1:
a: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
Suy ra: \(\widehat{ABO}=\widehat{ACO}=90^0\)
hay AC là tiếp tuyến của (O)
b: Xét (O) có
OI là một phần đường kính
CE là dây
OI⊥CE tại I
Do đó: I là trung điểm của CE
Xét ΔDCE có
DI là đường cao
DI là đường trung tuyến
Do đó: ΔDCE cân tại D
Xét ΔOED và ΔOCD có
OE=OC
ED=CD
OD chung
Do đó: ΔOED=ΔOCD
Suy ra: \(\widehat{OED}=\widehat{OCD}=90^0\)
hay DE là tiếp tuyến của (O)
đây là hình nhé, để cung cấp cho cách giải:
Xét tứ giác CEHD ta có:
góc CEH = 900 (Vì BE là đường cao)
góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
B)
Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.
AD là đường cao => AD ┴ BC => BDA = 900.
Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.
Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.
a: SA là tiếp tuyến của (O) với A là tiếp điểm
=>SA\(\perp\)AO tại A
=>ΔSAO vuông tại A
ΔSAO vuông tại A
=>\(AO^2+AS^2=OS^2\)
=>\(AS^2=5^2-3^2=16\)
=>SA=4(cm)
b: Xét ΔAOS vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot OS=AO\cdot AS\\OH\cdot OS=OA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AH=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\\OH=\dfrac{3^2}{5}=1,8\left(cm\right)\end{matrix}\right.\)
Xét ΔSAO vuông tại A có \(sinASO=\dfrac{OA}{OS}=\dfrac{3}{5}\)
nên \(\widehat{ASO}\simeq37^0\)
c: Xét (O) có
SA,SB là tiếp tuyến
Do đó: SA=SB
mà OA=OB
nên OS là trung trực của AB
=>OS\(\perp\)AB
mà AH\(\perp\)OS
và AH và AB có điểm chung là A
nên A,H,B thẳng hàng
d: Gọi M là trung điểm của SD
CD\(\perp\)CA
SA\(\perp\)CA
Do đó: CD//SA
Xét hình thang ASDC có
O,M lần lượt là trung điểm của AC,DS
=>OM là đường trung bình
=>OM//SA//DC
=>OM\(\perp\)CA
OM//SA
=>\(\widehat{MOS}=\widehat{OSA}\)
mà \(\widehat{OSA}=\widehat{MSO}\)
nên \(\widehat{MOS}=\widehat{MSO}\)
=>MO=MS
mà MS=MD
nên MO=SD/2
Xét ΔODS có
OM là đường trung tuyến
OM=SD/2
Do đó: ΔODS vuông tại O
=>O nằm trên đường tròn tâm M, đường kính SD
Xét (M) có
OM là bán kính
AC\(\perp\)OM tại O
Do đó: AC là tiếp tuyến của (M)