K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

Chọn D.

10 tháng 4 2017

a)A=x+3/x-2

A=x-2+5/x-2

A=1+5/x-2

vì 1 thuộc Z nên để A thuộc Z thì 5 phải chia hết cho x-2

x-2 thuộc ước của 5

x-2 thuộc -5;-1;1;5

x = -3;1;3 hoặc 7

giá trị các biểu thức theo giá trị của x như trên và lần lượt là 0;-4;6;2

b)để B= 1-2x/2+x thuộc Z thì

1-2x phải chia hết cho 2+x

nên 1-2x-4+4  phải chia hết cho x+2

1-(2x+4)+4  phải chia hết cho x+2

1+4-[2(x+2]  phải chia hết cho x+2

5 -[2(x+2] phải chia hết cho x+2

vì [2(x+2] chia hết cho x+2 nên 5 phải chia hết cho x+2

suy ra x+2 thuộc ước của 5 

  x+2 thuộc -5;-1;1;5

x=-7;-3;-1;3

giá trị các biểu thức theo giá trị của x như trên và lần lượt là -3;-7;3;-1

19 tháng 4 2017

bạn làm sai 1 chút ở đầu

9 tháng 6 2017

9 tháng 7 2019

Chọn đáp án B.

 

Cách 1: (Sử dụng kiến thức Hình học)

Gọi M, A, B, I lần lượt là điểm biểu diễn cho các số phức 

I là trung điểm của đoạn thẳng AB và 

 

Áp dụng bất đẳng thức Cô-si, ta có

 

Cách 2: (Sử dụng kiến thức Đại số)

 

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xky, ta có

 

22 tháng 11 2018

Đáp án A.

Phương pháp:

Từ  z = z ¯ + 4 - 3 i  tìm ra quỹ tích điểm M(x;y) biểu diễn cho số phức z = x + yi

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có: 

|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất ó MA = MB

Cách giải: Gọi z = x + ui ta có:

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có: 

|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất.

Ta có:  dấu bằng xảy ra ó MA = MB => M thuộc trung trực của AB.

Gọi I là trung điểm của AB ta có  và A B → = 3 ; - 4

Phương trình đường trung trực của AB là

Để (MA + MB)min ó Tọa độ điểm M là nghiệm của hệ phương trình

25 tháng 8 2019

Đáp án C

23 tháng 2 2016

\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

Mà \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ; \(m\in N\)*

Do đó \(M<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)

Vậy 1 < M < 2 nên M không phải là số tự nhiên/

10 tháng 1 2019

Đáp án A.

Gọi M x , y  là điểm biểu diễn số phức z.

Từ giả thiết, ta có z − 4 − 3 i = 5 ⇔ x − 4 2 + y − 3 2 = 5 ⇒ M  thuộc đường tròn (C) tâm I 4 ; 3 ,  bán kính R = 5 .  Khi đó P = M A + M B ,  với A − 1 ; 3 , B 1 ; − 1 .

Ta có

P 2 = M A 2 + M B 2 + 2 M A . M B ≤ 2 M A 2 + M B 2 .

Gọi E 0 ; 1  là trung điểm của AB

⇒ M E 2 = M A 2 + M B 2 2 − A B 2 4 .

Do đó P 2 ≤ 4 M E 2 + A B 2  mà

M E ≤ C E = 3 5   s u y   r a   P 2 ≤ 4. 3 5 2 + 2 5 2 = 200.

Với C là giao điểm của đường thẳng EI

với đường tròn (C).

Vậy P ≤ 10 2 .  Dấu “=” xảy ra 

⇔ M A = M B M = C ⇒ M 6 ; 4 ⇒ a + b = 10.