K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

\(a,-x^2+6x-16\)

\(=-x^2+3x+3x-9-5\)

\(=-x\left(x-3\right)+3\left(x-3\right)-5\)

\(=\left(3-x\right)\left(x-3\right)-5\)

\(=-\left(x-3\right)^2-5\le-5\)=>Luôn âm

\(c,-1+x-x^2\)

\(=-x^2+x-1\)

\(=-\left(x^2-x+\frac{1}{2}+\frac{1}{2}\right)\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\le\frac{-1}{2}\)=>Luôn âm

19 tháng 6 2018

a,\(-\left(x^2-3x+4\right)\)

   \(-\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]\)

\(\Leftrightarrow-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)(luôn âm)

b\(-2\left(x^2-5x+\frac{15}{2}\right)\)

\(-2\left[\left(x-\frac{5}{2}\right)^2+\frac{5}{4}\right]\)

\(-2\left(x-\frac{5}{4}\right)^2-\frac{5}{2}\le-\frac{5}{2}\)(luôn âm)

19 tháng 6 2018

c,\(-\left[\left(4x^2-4x+1\right)+\left(2y^2-6y+5\right)\right]\)

 \(=-\left[\left(2x-1\right)^2+2\left(y^2-3y+\frac{5}{2}\right)\right]\)

\(=-\left[\left(2x-1\right)^2+2\left(y-\frac{3}{2}\right)^2+\frac{1}{4}\right]\)

\(=-\left[\left(2x-1\right)^2+2\left(y-\frac{3}{2}\right)^2\right]-\frac{1}{4}\le-\frac{1}{4}\)(luôn âm)

8 tháng 1 2017

1)=2x^2+(x-1)^2+1

Tổng 2 số không  âm và 1 luôn dương

2)

Tồn tại A=> x khác +-1

A=(x+1)/(x-1)=1+2/(x-1)

x-1={-2,-1,1,2}

x={-1,0,2,3}

18 tháng 7 2016

a)\(x^2-8x+19=x^2-2.x.4+16+3=\left(x+4\right)^2+3\)

Vì \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2+3\ge3\Rightarrow x^2-8x+19\ge3\)

Vậy x2-8x+19 luôn nhận giá trị dương

mấy câu kia làm tương tự

24 tháng 6 2017

Phân thức đại số

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)

\(a;x^2-3x+3=x^2-2\cdot\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+3\)

                 \(=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\Leftrightarrow x^2-3x+3>0\forall x\)

15 tháng 8 2019

a, TA CO X -3X+3=X2-3X+(3/2)2 +3/4=(X-3/2)2+3/4 >0

TUONG TU

7 tháng 3 2019

Ta có: \(P=\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}=\frac{\left(x^3+1\right)\left(x+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}\)

                                                                                                                   \(=\frac{\left(x+1\right)\left(x^2-x+1\right)\left(x+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)

Vì \(\hept{\begin{cases}x^2+1\ge1>0\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\end{cases}}\)

Nên mẫu số luôn luôn khác 0

Do đó: \(P=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)

Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\) nên \(P\ge0\left(\forall x\right)\)

12 tháng 5 2020

\(P=\frac{x^4+x^2+x+1}{x^4-x^2+2x^2-x+1}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)

Do \(\left(x^2+1\right)\left(x^2-x+1\right)\ne0\)do đó không cần điều kiện của x

Vậy \(P=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)

\(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\x^2+1>0\forall x\end{cases}\Rightarrow P\ge0\forall x}\)

19 tháng 6 2018

a. \(2x^2-4x+10=x^2-2x+1+x^2-2x+1+8=\left(x-1\right)^2+\left(x-1\right)^2+8=2\left(x-1\right)^2+8\)

Vì \(2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+8\ge8\)

Vậy...

b. \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy..

c. \(2x^2-6x+5=x^2-4x+4+x^2-2x+1=\left(x-2\right)^2+\left(x-1\right)^2\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\Rightarrow\left(x-2\right)^2+\left(x-1\right)^2\ge0\)

Vậy...

19 tháng 6 2018

a) Đặt  \(A=x^2+4x+7\)

\(A=\left(x^2+4x+4\right)+3\)

\(A=\left(x+2\right)^2+3\)

Mà  \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow A\ge3>0\)

b) Đặt  \(B=4x^2-4x+5\)

\(B=\left(4x^2-4x+1\right)+4\)

\(B=\left(2x-1\right)^2+4\)

Mà  \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow B\ge4>0\)

c) Đặt  \(C=x^2+2y^2+2xy-2y+3\)

\(C=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x+y\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x+y\right)^2\ge0\forall x;y\)

      \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow C\ge2>0\)