Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Ta có:
\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)
Vậy \(S\) \(\text{⋮}\) \(-20\)
Bài 1:
Ta có:
\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)
\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)
\(=\left(-12\right).m^2.3.n^3\)
\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)
Xét: \(m^2\ge0\) với V m
3>0 nên \(m^2.3\ge0\) với V m
Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)
-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)
Vậy với n<0 và mọi m thì \(A\ge0\)
Lời giải:
\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)
Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)
Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)
Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)
Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi.
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.
Ta có :
\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.3^2-2^n.2^2+3^n-2^n=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=3^n.10-2^n.5=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\) chia hết cho 10
Bạn nhấn tổ hợp phím Ctrl + - để thu nhỏ màn hình mới xem được đầy đủ lời giải nhá !
-Bạn phân tích n^12-n^8-n^4+1. =(n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1).
-Do n lẻ nên trong n-1 và n+1 phải có một số chia hết cho 4, số còn lại chia hết cho 2; n^2+1 chia hết cho 2; n^4+1 chia hết cho 2.
=> (n-1)^2. (n+1)^2 chia hết cho 4^2.4; (n^2+1)^2 chia hết cho 4; n^4+1 chia hết cho 2.
=> (n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1) chia hết cho 4^2.4.4.2= 512.
Vậy đpcm.
-Bạn phân tích n^12-n^8-n^4+1. =(n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1).
-Do n lẻ nên trong n-1 và n+1 phải có một số chia hết cho 4, số còn lại chia hết cho 2; n^2+1 chia hết cho 2; n^4+1 chia hết cho 2.
=> (n-1)^2. (n+1)^2 chia hết cho 4^2.4; (n^2+1)^2 chia hết cho 4; n^4+1 chia hết cho 2.
=> (n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1) chia hết cho 4^2.4.4.2= 512.
Vậy đpcm.
P = 7 + 72 + 73 + ... + 72016
=> P = 7( 1 + 7 + 72 + 73) + ... + 72013( 1 + 7 + 72 + 73)
=> P = 7( 1 + 7 + 49 + 343) + ... + 72013( 1 + 7 + 49 + 343)
=> P = 7 . 400 + ... + 72013 . 400
=> P = (7 + ... + 72013) . 400
=> P = (7 + ... + 72013) . 202 (đpcm)
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)
\(\Leftrightarrow-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{n-1}+\sqrt{n}=11\)
\(\Leftrightarrow\sqrt{n}-1=11\Leftrightarrow\sqrt{n}=12\Leftrightarrow n=144\)
Một số khi chia cho 4 có 4 khả năng: chia hết (có dạng 4k), dư 1 (có dạng 4k + 1), dư 2 (có dạng 4k + 2), dư 3 (có dạng 4k + 3 = 4(k+1) - 1 = 4n - 1, với n = k+1).
Vì số nguyên tố lớn hơn 2 nên số đó không chia hết cho 2 => số đó không chia hết cho 2 và cho 4. Vậy nó chỉ có dạng 4k + 1 hoặc 4n - 1
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
hoành độ giao điểm là nghiệm của pt
\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)
giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau
\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)
ta đc điều phải cm
Đáp án A