K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

Chọn đáp án A.

Gọi M là giao điểm của ABCD. Từ B kẻ đường thẳng song song với AC, cắt CM tại N.

Khi quay ABCD quanh trục CD ta được hai phần:

+ Tam giác ACD sinh ra khối nón với bán kính đáy

11 tháng 6 2017

Chọn C.

Phương pháp

Sử dụng các công thức tính thể tích sau:

+) Thể tích khối nón bán kính đáy r, đường cao h là

Gọi A’, B’ lần lượt các điểm đối xứng A, B qua CD. H là trung điểm của BB’, ta dễ dàng chứng minh được C là trung điểm của AA’.

Gọi V1 là thể tích khối nón có chiều cao CD, bán kính đáy AC.

V2 là thể tích khối nón cụt có chiều cao CH, bán kính đáy nhỏ BH, bán kính đáy lớn AC.

 

V3 là thể tích khối nón có chiều cao CH, bán kính đáy BH.

29 tháng 6 2017

Đáp án B.

18 tháng 8 2018

7 tháng 3 2017

Đáp án A

Ta có thể tích khối tròn xoay tạo thành bằng hiệu thể tích hình trụ bán kính đáy AD, chiều cao CD trừ cho thể tích nón đỉnh B, bán kính đáy BM chiều cao CM.

Ta có

12 tháng 3 2017

Chọn B

27 tháng 5 2019

Đáp án là D

17 tháng 11 2018

Gọi S là giao điểm của AD và BC. Nếu quay tam giác SCD quanh trục SN, các đoạn thẳng SC. SB lần lượt tạo ra mặt xung quanh của hình nón ( H 1 )   v à   ( H 2 ) .

28 tháng 5 2018

Đáp án D

10 tháng 9 2017

Đáp án D

Khi quay hình thang cân ABCD quanh trục đối xứng ta được hình nón cụt có chiều cao h = 2 a 2  và bán kính 2 đáy là R 1 = a , R 2 = 2 a .  

Vậy thể tích cần tính là  V = πh 3 R 1 2 + R 2 2 + R 1 R 2 = 14 2 3 πa 3