K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

2 tháng 11 2019

Đáp án D.

Gọi M là trung điểm BC, dựng 

∆ AA'G vuông tại G, GH là đường cao => A'G =  1 3

Vậy 

30 tháng 7 2017

Đáp án C

Ta dễ dàng chứng minh được AA'//(BCC'B')

Gọi G là trọng tâm của tam giác ABC. Suy ra A'G ⊥ (ABC)

Ta có  

Lại có 

 Ta luôn có 

Gọi M, M' lần lượt là trung điểm của BC và B'C'. Ta có  .

Mà MM'//BB' nên BC ⊥ BB' => BCC'B' là hình chữ nhật 

Từ: 

28 tháng 5 2018

Đáp án A.

                      

Theo giả thiết ta có CD' ⊥ (ABC). Áp dụng định lý Cô-sin cho ∆ ABD ta được: 

AD = 

Hình chiếu vuông góc của AC’ trên mặt phẳng (ABC) là AD, vì vậy ta có góc giữa AC' và mặt phẳng (ABC) là góc  C ' A D ^   =   45 0 =>  ∆ C'AD vuông cân tại D 

Diện tích  ∆ ABC là 

Do đó 

6 tháng 1 2018

Đáp án A

Gọi I là trung điểm của BC.

29 tháng 5 2018

Đáp án A

Kẻ đường cao AH của tam giác ABC khi đó BC ⊥ A'AH, trong  ∆ A'AH kẻ đường cao AK thì

AK(A'BC), ta có: 

26 tháng 10 2017

Đáp án B.

Do H là trung điểm AB nên 

=> d(B;(ACC'A'))= 2d(H;(ACC'A'))

Ta có A'H ⊥ (ABC) nên 

Gọi D là trung điểm của AC thì BD ⊥ AC

 Kẻ HE ⊥ AC, 

Ta có 

Trong (A'HE) kẻ HK ⊥ A'E, 

Suy ra = 2HK

Ta có 

Xét tam giác vuông A'AH có 

Xét tam giác vuông A'HE có