K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2022

Gọi H′H′ là hình chiếu của H trên BC và G′G′ là hình chiếu của G trên AB.

Ta có: SEFGH=1/2EG.HFSEFGH=1/2EG.HF

Và SABCD=AD.CD;SABCD=AD.CD;

    EG≥GG′=AD;EG≥GG′=AD;

    HF≥HH′=CD.HF≥HH′=CD.

Do đó: SEFGH≥1/2SABCD.SEFGH≥1/2SABCD. 


 

15 tháng 3 2022

tk

Gọi H′H′ là hình chiếu của H trên BC và G′G′ là hình chiếu của G trên AB.

Ta có: SEFGH=1/2EG.HFSEFGH=1/2EG.HF

Và SABCD=AD.CD;SABCD=AD.CD;

    EG≥GG′=AD;EG≥GG′=AD;

    HF≥HH′=CD.HF≥HH′=CD.

Do đó: SEFGH≥1/2SABCD.SEFGH≥1/2SABCD. 

 



 

a: Xét ΔABD có AE/AB=AH/AD

nên EH//BD và EH=BD/2

Xét ΔCBD có CF/CB=CG/CD

nên FG//BD và FG=BD/2

=>EH//FG và EH=FG

=>EHGF là hình bình hành

Xét ΔBAC cos BE/BA=BF/BC

nên EF//AC và EF=AC/2

=>EF vuông góc với BD

=>EF vuông góc với EH

=>EHGF là hình chữ nhật

b: EH=BD/2=2,5cm

EF=AC/2=4cm

=>\(S_{EFGH}=4\cdot2,5=10\left(cm^2\right)\)

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác củaADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,BC, AD. Chứng minh:a) AC là tia phân giác của DAH .b) IH = IKBài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứngminh:a) Chứng minh AB //HKb) Chứng minh KAH...
Đọc tiếp

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác của
ADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,
BC, AD. Chứng minh:
a) AC là tia phân giác của DAH .
b) IH = IK
Bài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH
 AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng
minh:
a) Chứng minh AB //HK
b) Chứng minh KAH IAH 
c) Chứng minh AKI cân
Bài 7. Cho ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao
cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD b) BMD = CME
c) Đường vuông góc với OE tại E cắt Ox, Oy lần lượt tại M, N. Chứng minh
MN / / AC //BD.
Bài 8. Cho xOy . Lấy các điểm A,B thuộc tia Ox sao cho OA > OB. Lấy các điểm C, D
thuộc Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC
Chứng minh.:
a) AD = BC b) ABE = CDE
c) OE là tia phân giác của góc xOy

4
24 tháng 4 2020

mik ngu hình lắm xin lỗi nha

24 tháng 4 2020

ngu thì xen zô nói làm j

7 tháng 2 2020

Câu hỏi của Linh Đặng Thị Mỹ - Toán lớp 7 - Học toán với OnlineMath

Bài 1:Cho tam giác ABC vuông tại A,có AC=3AB.Trên AC lấy D và E cho AD=DE=EC.Tính tổng các góc BCA,góc BAD,góc BEABài 2:Cho tam giác ABC,có góc ABC=70 độ ,góc ACB=30 độ.Trên AB lấy M sao cho goc MCB =40 độ.Trên cạnh AC lấy N sao cho góc NBC=50 độ.Tính góc MNCBài 3:Lấy 3 cạnh BC,CA,BA của tam giác ABC làm canh AC làm cạnh .Dựng 3 tam giác đều BCA1,CAB1,BC1 ra phía ngoài .CMR: các đoan thẳng AA1,BB1,CC1 bằng nhau và đồng...
Đọc tiếp

Bài 1:Cho tam giác ABC vuông tại A,có AC=3AB.Trên AC lấy D và E cho AD=DE=EC.Tính tổng các góc BCA,góc BAD,góc BEA
Bài 2:Cho tam giác ABC,có góc ABC=70 độ ,góc ACB=30 độ.Trên AB lấy M sao cho goc MCB =40 độ.Trên cạnh AC lấy N sao cho góc NBC=50 độ.Tính góc MNC
Bài 3:Lấy 3 cạnh BC,CA,BA của tam giác ABC làm canh AC làm cạnh .Dựng 3 tam giác đều BCA1,CAB1,BC1 ra phía ngoài .CMR: các đoan thẳng AA1,BB1,CC1 bằng nhau và đồng quy
Bài 4:Cho tam giác ABC,đường cao AH.Trên nửa mp bờ AB không chứa C lấy D sao cho BD=BA,BD vuông góc BA.Trên nửa mp bờ AC không chứa B lấy E sao cho CE=CA,CE vuông góc CA.CMR:các đường thẳng AH,BE,CD đồng quy
Bài 5:Cho tam giác ABC vuông tại A.cạnh huyền BC=2AB,D trên AC ,E trên AB sao cho góc ABD = 1/3 góc ABC, góc ACE=1/3 góc ACD.Gọi F là giao điểm của BD và CE .Gọi I và K là hình chiếu của F trên BC và AC.Lấy H và G sao cho AC là trung trực của FH,BC là trung trực FG.CM:a,H,B,G thẳng hàng
b,tam giác DEF cân
Bài 6:Cho tam giác ABC nhọn, xác định D trên BC,E trên AC,F trên AB sao cho chu vi tam giác DEF nhỏ nhất

2
2 tháng 9 2017

Kẻ DM ∟ AC sao cho DM = AB. 
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c) 
=> ^DCM = ^AEB và BE = MC (1) 
Δ BMD = Δ BED (c - g - c) 
=> ^BMD = ^BED và BM = BE (2) 
(1) và (2) cho: 
^DCM = ^BMD và CM = MB 
=> Δ BMC cân tại M 
mà ^DMC + ^DCM = 90o (Δ MDC vuông) 
=> ^DMC + ^BMD = 90o 
=> Δ BMC vuông cân. 
=> BCM = 45o 
Mà ^ACB + ^DCM = ^BCM 
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt)) 
Cách 2: 
Đặt AB = a 
ta có: BD = a√2 
Do DE/DB = DB/DC = 1/√2 
=> Δ DBC đồng dạng Δ DEB (c - g - c) 
=> ^DBC = ^DEB 
Δ BDC có ^ADB góc ngoài 
=> ^ADB = ^DCB + ^DBC 
hay ^ACB + ^AEB = 45o 
Cách 3 
ta có: 
tanAEB = AB/AE = 1/2 
tanACB = AB/AC = 1/3 
tan (AEB + ACB) = (tanAEB + tanACB)/(1 - tanAEB.tanACB) 
= (1/2 + 1/3)/(1 - 1/2.1/3) = 1 = tan45o 
Vậy ^ACB + ^AEB = 45o

2 tháng 9 2017

Kẻ DM ∟ AC sao cho DM = AB. 

Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c) 

=> ^DCM = ^AEB và BE = MC (1) 

Δ BMD = Δ BED (c - g - c) 

=> ^BMD = ^BED và BM = BE (2) 

(1) và (2) cho: 

^DCM = ^BMD và CM = MB 

=> Δ BMC cân tại M 

mà ^DMC + ^DCM = 90o (Δ MDC vuông) 

=> ^DMC + ^BMD = 90o 

=> Δ BMC vuông cân. 

=> BCM = 45o 

Mà ^ACB + ^DCM = ^BCM 

=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt))